darknet yolo 层设置

darknet yolo 层设置,第1张

COCO数据集的类别数(cfg中的classes)为80,anchor数(cfg中的anchors)设置为9个,则filter个数(cfg中的filters)设置如上,规则如下公式:

车牌识别系统可以自动检测并识别图像中的车辆牌照,其算法主要包括牌照定位、牌照分割、字符识别等步骤。本文将给出一种基于深度学习的车牌识别系统方案。

由于可以自动地从视频图像中提取车辆牌照信息,因此车牌识别系统可以应用于以下行业:

我们的项目包含以下三个步骤:车辆牌照检测、牌照字符分割、牌照字符识别。

我们使用Yolo(You Only Look One)算法来检测车辆牌照。Yolo是一个基于卷积神经网络的深度学习目标检测架构。该架构由 Joseph Redmon , Ali Farhadi, Ross Girshick和Santosh Divvala引入,2015年推出第一个版本,然后逐渐升级至版本3:

Yolo是一个端到端训练的单一网络,可以用来预测目标的类别与边界框。Yolo网络速度极快,可以每秒45帧的速度实时处理图像。其中一个较小规模的网络,被称为Fast YOLO,甚至达到了令人咂舌的155帧/秒的处理速度。

下面我们来实现YOLO V3网络。首先,我们准备一个有700张包含土耳其车辆牌照的图片的数据集,对每一张图片,我们都使用一个桌面应用LabelImg标注出车牌位置并存入一个xml文件。数据下载及网络训练脚本如下:

在网络训练完之后,为了识别图像中的车辆牌照,我们从darknet/custom/weights中选择最新的模型并在文件object_detection_yolo.py中写入其路径名称,我们也将使用yolov3.cfg文件,注释掉训练部分,然后执行:

这就是我们的结果:

现在我们要分割出我们的车牌号码。这个步骤的输入是车牌图像,我们必须能够提取出单个字符的图像。由于这一步骤的输出将用于识别步骤,因此对于一个车牌识别系统而言,车牌分割步骤非常重要。为了尽可能的正确分割车牌字符,我们需要进行必要的预处理。

像素投影直方图用来找出字符区域的上限和下限、左边及右边。我们使用水平投影来找出字符的顶部 和底部位置,使用垂直投影来找出字符的左边和右边位置:

从车辆牌照中提取数字的另一个方法时使用形态学的开/闭 *** 作来生成一些连通区域,然后再使用连通跟踪算法提取这些连通区域。

识别阶段是我们的车牌自动检测与识别系统的最后一个环节,识别是基于前面环节得到的单个字符图像。我们的模型将对这些图像进行预测,从而得到最终的车牌号码。

为了尽可能利用训练数据,我们将每个字符单独切割,得到一个车牌字符数据集,该数据集中包含11个类(数字0-9以及阿拉伯单词),每个类包含30~40张字符图像,图像为28X28的PNG格式。

然后,我们就多层感知器MLP和K近邻分类器KNN的比较进行了一些调研,研究结果标明,对于多层感知器而言,如果隐层的神经元增多,那么分类器的性能就会提高;同样,对于KNN而言,性能也是随着近邻数量的增多而提高。不过由于KNN的可调整潜力要远远小于MLP,因此我们最终选择在这个阶段使用多层感知器MLP网络来识别分割后的车牌字符:

你可以在这里找到代码及数据集:github

原文链接:车辆牌照自动检测与识别 —— 汇智网


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11716763.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存