个体心理发展过程中,由于受遗传,环境等多因素的制约,在发展速度,成熟早晚和最终达到的高度等方面都表

个体心理发展过程中,由于受遗传,环境等多因素的制约,在发展速度,成熟早晚和最终达到的高度等方面都表,第1张

答案:具有不均衡性。

不平衡性定义:心理发展可以因速度、到达的时间和最终到达的高度而表现出多样化的发展模式。

不均衡性表现在两个方面。一是:同一方面的发展速度,二是不同方面的发展速度。表现在有的方面在较早的年龄阶段就已经达到较高的发展水平,有的则要到较晚的年龄阶段才能达到成熟水平

希望能帮到你!

正交实验设计

当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。

正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。

1.正交表

正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现 次。

正交表具有以下两项性质:

(1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。

(2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,11、12、13、21、22、23、31、32、33,且每对出现数也均相等。

以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。

2 交互作用表 每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。表14就是L8(27)表的交互作用表。

安排交互作用的试验时,是将两个因素的交互作用当作一个新的因素,占用一列,为交互作用列,从表14中可查出L8(27)正交表中的任何两列的交互作用列。表中带( )的为主因素的列号,它与另一主因素的交互列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的交互作用列。例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B交互作用列。又如可以看到第4列与第6列的交互列是第2列,等等。

3.正交实验的表头设计 表头设计是正交设计的关键,它承担着将各因素及交互作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。

表头设计的主要步骤如下:

(1)确定列数 根据试验目的,选择处理因素与不可忽略的交互作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。当每个试验号无重复,只有1个试验数据时,可设2个或多个空白列,作为计算误差项之用。

(2)确定各因素的水平数 根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。

(3)选定正交表 根据确定的列数©与水平数(t)选择相应的正交表。例如观察5个因素8个一级交互作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。

(4)表头安排 应优先考虑交互作用不可忽略的处理因素,按照不可混杂的原则,将它们及交互作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。例如某项目考察4个因素A、B、C、D及A×B交互作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其交互作用,故将二者优先安排在第1、2列,根据交互作用表查得A×B应排在第3列,于是C排在第4列,由于A×C交互在第5列,B×C交互作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。

(5)组织实施方案 根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。实验结果数据记录在该行的末尾。因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横着作”。

4.二水平有交互作用的正交实验设计与方差分析

例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。选用L8(27)正交表进行实验,实验结果见表17。

首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。然后进行方差分析。过程为:

求:总离差平方和

各列离差平方和 SSj=

本例各列离均差平方和见表10最底部一行。即各空列SSj之和。即误差平方和

自由度v为各列水平数减1,交互作用项的自由度为相交因素自由度的乘积。

分析结果见表18。

从表18看出,在α=005水准上,只有C因素与A×B交互作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到交互作用A×B的影响较大,且它们的二水平为优。在C2的情况下, 有B1A2和B1,A1两种组合状况下的回收率最高。考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。这样最后决定最佳配方为A2B1C2,即80℃,反应时间25h,原料配比为12:1。

如果使用计算机进行统计分析,在数据是只需要输入试验因素和实验结果的内容,交互作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调

用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用。

也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。

但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。

[例子]

研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种各种 *** 作系统的计算机上,它和SAS、BMDP并称为国际上最有影响的三大统计软件。

在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。

扩展资料:

SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是 *** 作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。

用户只要掌握一定的Windows *** 作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。

其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。

对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口,用户只需在菜单中选好各个选项,然后按“粘贴”按钮就可以自动生成标准的SPSS程序。极大的方便了中、高级用户。

1)统计图:在经过一年的使用后,新的常规图 *** 作界面已基本完善,本次的改进除使得 *** 作更为便捷外,还突出了两个重点。

首先在常规图中引入更多的交互图功能,如图组(Paneled charts),带误差线的分类图形如误差线条图和线图,三维效果的简单、堆积和分段饼图等。其次是引入几种新的图形,已知的有人口金字塔和点密度图两种。

2)统计表:几乎全部过程的输出都将会弃用文本,改为更美观的枢轴表。而且枢轴表的表现和易用性会得到进一步的提高,并加入了一些新的功能,如可以对统计量进行排序、在表格中合并/省略若干小类的输出等。

此外,枢轴表将可以被直接导出到PowerPoint中,这些无疑都方便了用户的使用。

参考资料:

——spss

excel直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件,那么怎样用excel表进行可重复的双因素方差分析呢?

1、 首先我们打开电脑里的Excel软件,输入数据。这里是探来讨的是光照和PH两因素是否对冬虫夏草子实体长度的作用。

2、 然后我们点击数据,选择自菜单栏最右边数据分析。

3、 在d出的窗口可以看多有很多选项,选择无重复方差分析,点击确认。

4、 选择输入区域,即你的数据。选择输出数据,有三个选项,随便选择一个,这里演示为新工作表。另外,标志可以勾选。点击确认。

5、 在这里我们可以看到分析出来的数据了,有方差,平均值。一般我们看F值和Fcrit值得大小就可以了。如果F>;Fcrit,说明这个因素对结果有显著作用。在这里,明显可以看多F都小于Fcrit,说明PH和光照对虫草的出草长度无显著性差异。

以上就是用excel表进行可重复的双因素方差分析 *** 作步骤,希望能帮到大家。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/12178856.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存