csc的不定积分

csc的不定积分,第1张

csc的不定积分 ∫cscx dx =∫1/sinx dx =∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式 =∫1/[sin(x/2)cos(x/2)] d(x/2) =∫1/tan(x/2)*sec2(x/2) d(x/2) =∫1/tan(x/2) d[tan(x/2)],注∫sec2(x/2)d(x/2)=tan(x/2)+C =ln|tan(x/2)|+C,这是答案一 进一步化简: =ln|sin(x/2)/cos(x/2)|+C =ln|2sin(x/2)cos(x/2)/[2cos2(x/2)]|+C,凑出两倍角公式 =ln|sinx/(1+cosx)|+C =ln|sinx(1-cosx)/sin2x|+C =ln|(1-cosx)/sinx|+C =ln|cscx-cotx|+C,这是答案二在 微积分中,一个函数 f 的 不定积分,或原函数,或反导数,是一个 导数等于 f 的 函数 F ,即 F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中 F是 f的不定积分。根据 牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系,其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/3886052.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-19
下一篇 2022-10-19

发表评论

登录后才能评论

评论列表(0条)

保存