什么是水文估计量的抽样误差?

什么是水文估计量的抽样误差?,第1张

什么是水文估计量的抽样误差?

[拼音]:shuiwen gujiliang de chouyang wucha

[外文]:sampling error of hydrologic estimator

过正文:水文随机变量的分布函数中的参数(或参数的函数)的估计量的均方根误差。水文随机变量x的分布函数F(xθ) 中所含的参数θ,一般皆为未知数, 需根据样本资料(x1,x2,…,xn)予以估计。换言之,为进行参数估计,必须构造一个样本的函数,称为估计量,记为


(x1,x2,…,xn),从而当有一具体样本(x1,x2,…,xn)之后,就可算出


(x1,x2,…,xn),做为θ的估计值。由于样本为随机变量,可以证明,作为样本函数的估计量


(x1,x2,…,xn),也是随机变量,故有其概率密度函数,记为g(


θ),称为抽样分布(见上页图)。它表示估计量


取各种不同数值的可能性大小。虽然任一估计量


取得真值θ的概率都为零, 但不同的估计量其平均误差的大小还是不同的。这个平均误差,通常以估计量


对参数真值θ的均方根误差来代表,可表示为:




式中E为取期望值的符号,根据定义它等于式中右侧的积分。粗略地说,g(


θ)的图形对θ越集中, σ孌越小,反之则越大。




在水文统计中,需要估计的往往不仅是参数,还有参数的某种函数,例如xp分位数xp(见水文随机变量)。在由样本求得了θ的估计量


后, 就可进一步求得xp的估计量憫p。类似于对σ孌的讨论,通常以估计量p对真值xp的均方根误差来代表p的平均误差,记为σpσ孌特别是σp的数值,在分布函数及估计方法都很简单时,可用分析方法采用近似公式予以计算。在分布函数或估计方法较复杂时,用近似公式计算,误差较大。这时可用蒙特卡洛方法求出其近似值。水文统计学研究的基本内容之一,就是要设法提出一种抽样误差最小的估计量。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4629650.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-05
下一篇 2022-11-05

发表评论

登录后才能评论

评论列表(0条)

保存