2021年国内物联网行业环境分析

2021年国内物联网行业环境分析,第1张

2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。

截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。

目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

——以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》

新一代信息技术。
物联网是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与网络结合起来而形成的一个巨大网络,实现任何时间、任何地点,人、机、物的互联互通。

物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。其英文名称是:“Internetofthings(IoT)”。顾名思义,物联网就是物物相连的互联网。这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。
因此,应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。

物联网就是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。

机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。

中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;

另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口。

影响

人工智能的长期经济影响尚不确定。一项针对经济学家的调查显示,对于越来越多地使用机器人和人工智能是否会导致长期失业率大幅上升存在分歧,但他们普遍认为,如果生产力收益重新分配,这可能是一项净收益。

普华永道2017 年的一项研究认为,到 2030 年,中华人民共和国在经济上从人工智能中获益最多,占 GDP 的261% 。

一份 2020 年 2 月的欧盟人工智能白皮书提倡人工智能以获取经济利益,包括“改善医疗保健(例如使诊断更精确,更好地预防疾病),提高农业效率,为减缓和适应气候变化做出贡献, 通过预测性维护提高生产系统的效率”,同时承认潜在风险。

以上内容参考 百度百科-人工智能

大数据是信息化社会无形的生产资料,其概念被社会各界不断演绎出多种版本,但关于大数据、物联网、之间的关系,很多人不甚明了。对此,同方物联网产业应用本部技术总监赵英,对此做出了详细的解读。大数据、物联网、之间的关系简单来说就是:大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。
物联网对大数据的意义方面,赵英举了个例子来说明物联网技术对大数据的推进。去年北京721暴雨之后,政府采取了很多解决措施,很重要的一个体现是,北京市科委很快就立了专项基金去给受灾的房山和门头沟这两个区进行应急管理能力的提升以及信息化的建设。同方参与了门头沟的项目,帮助门头沟提升预警能力。同方对门头沟原来的应急平台进行了改造和提升。比如对水位的监测,在有些重点立交桥下安装水位计,水位到一定程度会发生预警,相关部门就可以据此采取一些措施,这就是物联网技术的应用。

人工智能类似软件,需要物联网作为载体,物联网类似个硬件,是需要人工智能来驱动的。人工智能需要落地的应用作为载体,物联网就是一个最重要的载体。

人工智能为物联网提供强有力的数据扩展

物联网可以说成是互联设备间数据的收集及共享,而人工智能将是将数据提取出来后做出分析和总结,促使互联设备间更好的携同工作。

人工智能让物联网更加智能化

在物联网应用中,人工智能技术在某种程度上可以帮助互联设备应对突况。当设备检测到异常情况时,人工智能技术会为它做出如何采取措施的进一步选择,这样可以大大提高了处理突发事件的准确度。

人工智能有助于物联网提高运营效率

人工智能通过分析、总结数据信息,从而解读企业服务生产的发展趋势并对未来事件作出预测。例如,利用人工智能监测工厂设备零件的使用情况,从数据分析中发现可能出现问题的几率,并做出预警提醒,这样一来,会从很大程度上减少故障影响,提高运营效率。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10304885.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-07
下一篇 2023-05-07

发表评论

登录后才能评论

评论列表(0条)

保存