哪些传感器技术应用于物联网

哪些传感器技术应用于物联网,第1张

楼上说的对,不过楼上这些传感器主要用在物联网农业上。物联网的概念很广,我再添加几个传感技术吧:CAN总线通讯、图像传感器、车速传感器、胎压监测、超声波防撞报警等(主要在车联网>1 物联网的标准体系

2 急需的物联网总体标准
3 传感器标准
4 传感器标准
5 传感器标准进展情况
6 传感器标准体系框架

认知感知层

1.感知层的概念

物联网层次结构分为三层,分别为感知层、网络层、应用层。感知层位于最 底层,它是物联网的核心,其功能为“感知”,即通过传感网络获取环境信息。 感知层是物联网的核心,是信息采集的关键部分。

2.感知层的应用

感知层包括二维码标签及识读器、RFID 标签及读写器、摄像头、GPS 导航、 各种功能传感器、M2M 终端、传感器网关等,主要功能是识别物体、采集信息, 与人体结构中皮肤和五官的作用类似。

3.感知层的关键技术

(1) 传感器:传感器是物联网中获得信息的主要设备,它利用各种机制把被 测量转换为电信号,然后由相应信号处理装置进行处理,并产生响应动作。 (2)RFID:它的全称为 Radio Frequency Identification,即射频识别, 又称为电子标签。RFID 是一种非接触式的自动识别技术,可以通过无线电讯号 识别特定目标并读写相关数据。它主要用来为物联网中的各物品建立唯一的身份 标示。

(3)无线传感网络:它的英文名称为 Wireless Sensor Network,简称 WSN。 传感器网络是一种由传感器节点组成网络,其中每个传感器节点都具有传感器、 微处理器和通信单元。节点间通过通信网络组成传感器网络,共同协作来感知和 采集环境或物体的准确信息。它是目前发展迅速,应用最广的传感器网络。

认知网络层

1 网络层的概念

网络层位于物联网三层结构中的第二层,它功能是通过通信网络进行信息传 输。网络层作为纽带连接着感知层和应用层,它由各种私有网络、互联网、有线 和无线通信网等组成,相当于人的神经中枢系统,负责将感知层获取的信息,安 全可靠地传输到应用层,然后根据不同的应用需求进行信息处理。

2 网络层的组成

物联网网络层包含接入网和传输网,分别实现接入功能和传输功能。传输网 由公网与专网组成,典型传输网络包括电信网、广电网、互联网。接入网包括光 纤接入、无线接入、以太网接入、卫星接入等各类接入方式,实现底层的传感器 网络、RFID 网络最后一公里的接入。

3 网络层的主要技术

物联网用到的通信技术主要包括 3G/4G 通信、IPv6、WI-FI 和 WIMAX、蓝牙、 ZigBee 自组网技术等。正在向更快的传输速率,更宽的传输宽带、更高的频谱 利用率、更智能化的接入和网络管理发展。
认知应用层

1 应用层的概念

应用层位于物联网三层结构中的最顶层,它的功能是通过云计算等计算平台 进行信息处理。应用层与最低端的感知层一起,是物联网的显著特征和核心所在, 应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界 的实时控制、精确管理和科学决策。

2 应用层的技术

(1)物联网应用:它是用户直接使用的各种应用,通常用应用软件的形式 表现。如智能 *** 控、安防、电力抄表、远程医疗、智能农业等。

(2)物联网中间件:物联网中间件是一种独立的系统软件或服务程序,将 各种可以公用的能力进行统一封装,提供给物联网应用使用。

(3)云计算:它对物联网海量数据的存储和分析。根据服务类型不同将云 计算分为:基础架构即服务(IaaS)、平台即服务(PaaS)、服务和软件即服务(SaaS)。

3 应用层与其他两层的关系 感知层将采集到的数据通过网络层传递给应用层,应用层将接收到的数据进 行分析管理,再将这些数据根据各行各业的应用做出反应处理。例如,在智能电 网中的远程电力抄表应用:安置于用户家中的读表器上显示感知层中的传感器采 集到的数据,通过网络层将数据发送并汇总到发电厂的处理器上,该处理器及其 对应工作就属于应用层,它将完成对用户用电信息的分析,并自动采取相关措施。

传感网 传感网 定义:随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的无线网络。 功能:借助于节点中内置的传感器测量周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等物质现象。 以互联网为代表的计算机网络技术是二十世纪计算机科学的一项伟大成果,它给我们的生活带来了深刻的变化,然而在目前,网络功能再强大,网络世界再丰富,也终究是虚拟的,它与我们所生活的现实世界还是相隔的,在网络世界中,很难感知现实世界,很多事情还是不可能的,时代呼唤着新的网络技术。传感网络正是在这样的背景下应运而生的全新网络技术,它综合了传感器、低功耗、通讯以及微机电等等技术,可以预见,在不久的将来,传感网络将给我们的生活方式带来革命性的变化。 无线传感网 无线传感网络技术是典型的具有交叉学科性质的军民两用战略高技术,可以广泛应用于GF军事、国家安全、环境科学、交通管理、灾害预测、医疗卫生、制造业、城市信息化建设等领域。无线传感器网络(WSNs)是由许许多多功能相同或不同的无线传感器节点组成,每一个传感器节点由数据采集模块(传感器、A/D转换器)、数据处理和控制模块(微处理器、存储器)、通信模块(无线收发器)和供电模块(电池、DC/AC能量转换器)等组成。近期微电子机械加工(MEMS)技术的发展为传感器的微型化提供了可能,微处理技术的发展促进了传感器的智能化,通过MEMS技术和射频(RF)通信技术的融合促进了无线传感器及其网络的诞生。传统的传感器正逐步实现微型化、智能化、信息化、网络化,正经历着一个从传统传感器(Dumb Sensor)→智能传感器(Smart Sensor)→嵌入式Web传感器(Embedded Web Sensor)的内涵不断丰富的发展过程。 国际上比较有代表性和影响力的无线传感网络实用和研发项目有遥控战场传感器系统(Remote Battlefield Sensor System,简称 REMBASS --伦巴斯)、网络中心战(NCW)及灵巧传感器网络(SSW))、智能尘(smart dust)、IntelMote、Smart -Its项目、SensIT、SeaWeb、行为习性监控(Habitat Monitoring)项目、英国国家网格等。尤其是今年最新试制成功的低成本美军“狼群”地面无线传感器网络标志着电子战领域技战术的最新突破。俄亥俄州正在开发“沙地直线”(A Line intheSand)无线传感器网络系统。这个系统能够散射电子绊网(tripwires)到任何地方,以侦测运动的高金属含量目标。民用方面,美日等发达国家在对该技术不断研发的基础上在多领域进行了应用。 英特尔与加利福尼亚州大学伯克利分校正领导着微尘技术的研究工作。他们成功创建了瓶盖大小的全功能传感器,可以执行计算、检测与通信等功能。2002年,英特尔研究实验室研究人员将处方药瓶大小的32个传感器连进互联网,以读出缅因州“大鸭岛”上的气候,评价一种海燕巢的条件。而2003年第二季度,他们换用150个安有D型微型电池的第二代传感器,来评估这些鸟巢的条件。他们的目的是让世界各国研究人员实现无入侵式及无破坏式的、对敏感野生动物及其栖居地的监测。该公司开发出了用于家庭护理的无线传感器网络系统。根据演示,试制系统通过在鞋、家具,以及家用电器中嵌入半导体传感器,帮助老年人、阿尔茨海默氏病患者,以及残障人士的家庭生活。该系统利用无线通信将各传感器联网,可高效传递必要的信息,从而方便病人接受护理,还可以减轻护理人员的负担。该无线传感器网络系统是英特尔公司在阿尔茨海默氏病患者家庭的合作下,历时一年研究完成的,2004年下半年开始试用。 日立制作所与YRP泛在网络化研究所2004年11月24日宣布开发出了全球体积最小的传感器网络终端。该终端为安装电池的有源无线终端,可以搭载温度、亮度、红外线、加速度等各种传感器。设想应用于大楼与家庭的无线传感器以及安全管理方面。 三菱电机日前开发成功了一种设想用于传感器网络的小型低耗电无线模块。能够使用特定小功率无线构筑对等(Ad-hoc)网络。目标是取代目前利用专线构筑的家用安全网络,计划2005年~2006年达到实用水平。具体而言,与红外线传感器配合,检测是否有人、与加速度传感器配合,检测窗玻璃和家具的振动、与磁传感器配合,检测门的开关,等等。 在旧金山,200个联网微尘已被部署在金门大桥。这些微尘用于确定大桥从一边到另一边的摆动距离—可以精确到在强风中为几英尺。当微尘检测出移动距离时,它将把该信息通过微型计算机网络传递出去。信息最后到达一台更强大的计算机进行数据分析。任何与当前天气情况不吻合的异常读数都可能预示着大桥存在隐患。 我国现代意义的无线传感网及其应用研究几乎与发达国家同步启动,1999年首次正式出现于中国科学院《知识创新工程试点领域方向研究》的信息与自动化领域研究报告中,作为该领域提出的五个重大项目之一。随着知识创新工程试点工作的深入,2001年中科院依托上海微系统所成立微系统研究与发展中心,引领院内的相关工作,并通过该中心在无线传感网的方向上陆续部署了若干重大研究项目和方向性项目,参加单位包括上海微系统所、声学所、微电子所、半导体所、电子所、软件所、中科大等十余个校所,初步建立传感网络系统研究平台,在无线智能传感网络通信技术、微型传感器、传感器节点、簇点和应用系统等方面取得很大的进展,2004年9月相关成果在北京进行了大规模外场演示,部分成果已在实际工程系统中使用。国内的许多高校也掀起了无线传感器网络的研究热潮。清华大学、中国科技大学、浙江大学、华中科技大学、天津大学、南开大学、北京邮电大学、东北大学、西北工业大学、西南交通大学、沈阳理工大学和上海交通大学等单位纷纷开展了有关无线传感器网络方面的基础研究工作。一些企业如中兴通讯公司等单位也加入无线传感器网络研究的行列。 传感网在民用方面,涉及城市公共安全、公共卫生、安全生产、智能交通、智能家居、环境监控等领域。国内从事传感网应用的大企业目前为数不多,小企业呈现蓬勃发展的势头。北京鼎天软件有限公司,主要从事城市公共安全应急指挥系统建设,已经承担扬州电子政务和扬州应急指挥系统。上海电器科学研究院主要从事智能交通方面的工程,已经承担上海市内、外环智能交通工程。嘉兴中科无线传感网科技有限公司在数字航道、城市应急系统、机场监控等方面有较好的技术背景,相关项目工程正在进行中。沈阳东软、北大青鸟、亿阳信通等企业也传感网应用方面有所涉足,目前主要在电子政务方面,正在向公共安全应急指挥系统进发。 物联网 所谓“物联网”(Internet of Things),指的是将各种信息传感设备,如射频识别(RFID)装置 [1] 、红外感应器、全球定位系统、激光扫描器等种种装置与互联网结 合起来而形成的一个巨大网络。其目的,是让所有的物品都与网络连接在一起,方便识别和管理。 物联网是利用无所不在的网络技术建立起来的其中非常重要的技术是RFID电子标签技术 以简单RFID系统为基础,结合已有的网络技术、数据库技术、中间件技术等,构筑一个由大量联网的阅读器和无数移动的标签组成的,比Internet更为庞大的物联网成为RFID技术发展的趋势。在这个网络中,系统可以自动的、实时的对物体进行识别、定位、追踪、监控并触发相应事件。 物联网又称“传感网”,以互联网为代表的计算机网络技术是二十世纪计算机科学的一项伟大成果,它给我们的生活带来了深刻的变化,然而在目前,网络功能再强大,网络世界再丰富,也终究是虚拟的,它与我们所生活的现实世界还是相隔的,在网络世界中,很难感知现实世界,很多事情还是不可能的,时代呼唤着新的网络技术。 无线传感网络正是在这样的背景下应运而生的全新网络技术,它综合了传感器、低功耗、通讯以及微机电等等技术,可以预见,在不久的将来,无线传感网络将给我们的生活方式带来革命性的变化。 定义:随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的无线网络。 英文名:Wireless Sensor Networks;缩写:WSN 功能:借助于节点中内置的传感器测量周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等物质现象。 目前较为成型的分布式网络集成框架是EPCglobal提出的EPC网络。EPC网络主要是针对物流领域,其目的是增加供应链的可视性(visibility)和可控性(control),使整个物流领域能够借助RFID技术获得更大的经济效益。 EPC网络的关键技术包括: EPC编码:长度为64位、96位和256位的ID编码,出于成本的考虑现在主要采用64位和96位两种编码。EPC编码分为四个字段,分别为:①头部,标识编码的版本号,这样就可使电子产品编码采用不同的长度和类型;②产品管理者,如产品的生产商;③产品所属的商品类别;④单品的唯一编号。 Savant,介于阅读器与企业应用之间的中间件,为企业应用提供一系列计算功能。它首要任务是减少从阅读器传往企业应用的数据量,对阅读器读取的标签数据进行过滤、汇集、计算等 *** 作,同时Savant还提供与ONS、PML服务器、其他Savant互 *** 作功能。 对象名字服务,类似于域名服务器DNS,ONS提供将EPC编码解析为一个或一组URLs的服务,通过URLs可获得与EPC相关产品的进一步信息。 信息服务,以PML格式存储产品相关信息,可供其他的应用进行检索,并以PML的格式返回。存储的信息可分为两大类,一类是与时间相关的历史事件记录,如原始的RFID阅读事件(记录标签在什么时间,被哪个阅读器阅读),高层次的活动记录如交易事件(记录交易涉及的标签)等;另一类是产品固有属性信息,如产品生产时间、过期时间、体积、颜色等。 物理标示语言,PML是在XML的基础上扩展而来,被视为描述所有自然物体、过程和环境的统一标准。在EPC网络中,所有有关商品的信息都以物理标示语言PML来描述,是EPC网络信息存储和交换的标准格式。

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

●传感器技术:价格低廉、性能良好的传感器是物联网应用的基石,物联网的发展要求更准确、更智能、更高效以及兼容性更强的传感器技术。智能数据采集技术是传感器技术发展的一个新方向。信息的泛在化对传感器和传感装置提出了更高的要求。具体如,微型化:元器件的微小型化,要求节约资源与能源;智能化:具备自校准、自诊断、自学习、自决策、自适应和自组织等人工智能技术;低功耗与能量获取技术:供电方式为电池、阳光、风、温度、振动等多种方式。
●设备兼容技术:大部分情况下,企业会基于现有的工业系统建造工业物联网,如何实现工业物联网中所用的传感器能够与原有设备已应用的传感器相兼容是工业物联网推广所面临的问题之一。传感器的兼容主要指数据格式的兼容与通信协议的兼容,兼容关键是标准的统一。目前,工业现场总线网络中普遍采用的如Profibus、Modus协议,已经较好地解决了兼容性问题,大多数工业设备生产厂商基于这些协议开发了各类传感器、控制器等。近年来,随着工业无线传感器网络应用日渐普遍,当前工业无线的WirelessHART、ISA100.11a以及wIA—PA3大标准均兼容了IEEE802.15.4无线网络协议,并提供了隧道传输机制兼容现有的通信协议,丰富了工业物联网系统的组成与功能。
●网络技术:网络是构成工业物联网的核心之一,数据在系统不同的层次之间通过网络进行传输。网络分为有线网络与无线网络,有线网络一般应用于数据处理中心的集群服务器、工厂内部的局域网以及部分现场总线控制网络中,能提供高速率高带宽的数据传输通道。工业无线传感器网络则是一种新兴的利用无线技术进行传感器组网以及数据传输的技术,无线网络技术的应用可以使得工业传感器的布线成本大大降低,有利于传感器功能的扩展,因此吸引了国内外众多企业和科研机构的关注。
传统的有线网络技术较为成熟,在众多场合已得到了应用验证。然而,当无线网络技术应用于工业环境时,会面临如下问题:工业现场强电磁干扰、开放的无线环境让工业机器更容易受到攻击威胁、部分控制数据需要实时传输。相对于有线网络,工业无线传感器网络技术则正处在发展阶段,它解决了传统的无线网络技术应用于工业现场环境时的不足,提供了高可靠性、高实时性以及高安全性,主要技术包括:自适应跳频、确实性通信资源调度、无线路由、低开销高精度时间同步、网络分层数据加密、网络异常监视与报警以及设备入网鉴权等。
●信息处理技术:工业信息出现爆炸式增长,工业生产过程中产生的大量数据对于工业物联网来说是一个挑战,如何有效处理、分析、记录这些数据,提炼出对工业生产有指导性建议的结果,是工业物联网的核心所在,也是难点所在。
当前业界大数据处理技术有很多,如SAP的BW系统在一定程度上解决了大数据给企业生产运营带来的问题。数据融合和数据挖掘技术的发展也使海量信息处理变得更为智能、高效。工业物联网泛在感知的特点使得人也成为了被感知的对象,通过对环境数据的分析以及用户行为的建模,可以实现生产设计、制造、管理过程中的人一人、人一机和机一机之间的行为、环境和状态感知,更加真实地反映出工业生产过程中的细节变化,以便得出更准确的分析结果。
●安全技术:工业物联网安全主要涉及数据采集安全、网络传输安全等过程,信息安全对于企业运营起到关键作用,例如在冶金、煤炭、石油等行业采集数据需要长时问的连续运行,如何保证在数据采集以及传输过程中信息的准确无误是工业物联网应用于实际生产的前提。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10419462.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存