解密,黑客到底如何对物联网进行攻击

解密,黑客到底如何对物联网进行攻击,第1张

谁会想要攻击智能家居?原因为何?这么做对黑客有何好处?由于物联网 IoT ,Internet of Thing)装置有别于 PC 和智能手机,并非全都采用相同的 *** 作系统 (至少目前市场现况是如此)。然而这一点小小的差异,就会让黑客更难以发动大规模的攻击。除此之外,想要破解物联网装置的安全机制也需要相当的知识和适当的工具。


近年来,信息安全研究人员早已证明智能装置确实可能遭到黑客入侵。当初研究人员骇入这些装置的用意,只是希望引起厂商们注意产品的安全性。
但就在去年,趋势科技研究人员以实验证明黑客确实能够从远程撷取智能车辆的数据,甚至篡改自动化油表的油量。为了降低伤害的风险,这些实验都是在控制的条件下进行,但歹徒可就不会这么体贴。
现在我们已知道物联网装置有可能遭骇,那么,歹徒骇入这些功能单纯的家用智能装置要做什么?以下列举了一些可能攻击物联网的非典型嫌犯,以及他们的动机和他们攻击智能家居的机率有多大。
网络犯罪集团

对网络犯罪集团来说,其攻击的动机永远都是为了钱。随着越来越多物联网 装置进入家庭当中,网络犯罪集团盯上这些装置以及这些装置所连接的智能家居网络是迟早的事。网络犯罪集团一旦骇入智能家居网络,他们就可能发动勒索病毒攻击或者将装置锁住来勒索赎金。此外,他们也可能窃取敏感的用户数据,然后用来勒索被害人,或者拿到地下市集贩卖。
不肖分子

不肖分子很少有正当的攻击动机,他们总是大费周章地试图得到他们想要的。对这些人来说,他们有可能利用家庭物联网装置来跟踪、尾随、伤害受害人,甚至恶意破坏竞争对手的生意来取得优势。
黑客激进分子

不论是为了宣扬政治理念、表达不满,或者动员人群以达到某种目的,黑客激进分子向来偏爱能够让他们制造最大宣传效果的管道。随着越来越多人开始拥抱智能家居,黑客激进分子很可能会考虑利用这些装置来扩大他们的地盘。
政府机关

当牵涉到国家安全和个人隐私权时,政府对人民的监控一向是个引起争议的话题。媒体一再爆料,政府机构经常为了国家和人民安全的理由而监听私人通讯以追查可疑嫌犯。因此,一些具备声音和视讯传输功能的智能家居装置就可能成为政府机关用于监控国家安的工具。
恐怖分子

尽管恐怖分子的主要目标是散播恐惧,但他们不太可能会利用智能家居装置来达到这项目的。但随着各式各样的企业都在营业系统和重大基础架构当中导入物联网技术,恐怖分子应该会盯上这些更有效果的攻击目标。
企业机构

严格来说,企业机构不算是黑客,但每当有厂商推出全新的热门物联网装置时,就会引起社会大众某种程度的不安。这通常都和隐私权有关。因此,正在考虑购买的客户,就会想要知道这些智能装置用起来到底安不安全。凡是会经手客户信息的任何企业,都必须坦白说明他们会搜集何种资料、如何搜集、储存在哪里、用途为何,以及还有谁会存取这些数据。若未正确告知客户这些相关细节,就是厂商的不对。

Android中的蓝牙

  说到Android中的蓝牙,大家听到的可能有蓝牙10、蓝牙20、蓝牙30、蓝牙40之类的以数字结尾的蓝牙版本号,而实际上,在最新的标准中,已经不再使用数字版本号作为蓝牙版本的区分了,取而代之的是经典蓝牙与低功耗蓝牙(BLE)这两种区别。

     这里提到的低功耗蓝牙也会有很多人会误解为就是蓝牙40,但是完整的蓝牙40规范中实际上包括有经典蓝牙和低功耗蓝牙这两个部分,大家看看如下这张分类表就能够明白这其中的关系了。

如表中所述,现在的蓝牙实际上分为了三类:单模、双模和经典。那么,最官方的蓝牙版本称呼就是,单模蓝牙、双模蓝牙和经典蓝牙。

    在这其中,最前沿的当属单模蓝牙了,也就是低功耗蓝牙。这个蓝牙标准和经典蓝牙区别极大,在最初甚至考虑过加入WIFI阵营,但是因为蓝牙阵营这边条件较为优厚(比如授权费用极低)才并入了蓝牙标准。

那么,低功耗蓝牙和经典蓝牙的区别究竟在哪里呢?

    要是仅仅从两者的通信方式上来说,可以说除了名字叫蓝牙外,完全可以当做两个东西。不过,两者在总体上的流程却也是相似的,那就是:

发现设备->配对/绑定设备->建立连接->数据通信

经典蓝牙和低功耗蓝牙除了配对/绑定这个环节是一样的之外,其它三个环节都是不同的。

1 发现设备

经典蓝牙:经典蓝牙设备发现其它经典蓝牙设备的方式是调用BluetoothAdapter的startDiscovery()方法。

api上说的比较模糊,大致是说只能够发现经典蓝牙设备。

然而实验发现 BluetoothAdapterstartDiscovery是可以同时发现经典蓝牙和ble的

低功耗蓝牙:低功耗蓝牙中则有一个主设备(Central)和从设备(Peripheral,也叫外围设备)的概念。主设备作为发现方,调用发现设备的方法,通过BluetoothAdapter的startLeScan()方法实现。从设备则作为被发现方,发出广播,以供发现。同样,这个startLeScan()方法也仅能够发现低功耗蓝牙从设备。

总结:BluetoothAdapterstartDiscovery在大多数手机上是可以同时发现经典蓝牙和Ble的,但是startDiscovery的回调无法返回Ble的广播,所以无法通过广播识别设备,且startDiscovery扫描Ble的效率比StartLeScan低很多。所以在实际应用中,还是StartDiscovery和StartLeScan分开扫,前者扫传统蓝牙,后者扫低功耗蓝牙。

注意:当两种蓝牙设备被某设备(包括当前的设备)配对/绑定后,可能不会再被扫描到。

2 配对/绑定

有很多小伙伴都不太理解配对和绑定究竟有什么区别,或者它们根本就是同一个东西。好吧,严格说配对和绑定是有区别的,也就是不是指的同一件事情。但是这两者的区别比较模糊,也不好解释。目前JACK的机器人的理解是,配对是建立两者的对应关系,而绑定则把这层关系保存固定下来并进行了强化,暂时这么理解着吧。

不管是经典蓝牙还是低功耗蓝牙,绑定方法都是通用的,可以调用相同的绑定方法。

3 建立连接

在建立连接的方式上,两者就千差万别了。

——蓝牙小知识——

在蓝牙设备中,存在着物理地址,我们也叫作蓝牙的MAC地址,这个地址是唯一的,就像咱们网络上的IP地址。同时还存在着一个叫做UUID的东西,可以把它理解为是IP地址中的端口号。正如知道了IP地址和端口号,就知道了怎么链接到目标网络服务器位置,知道了蓝牙设备的MAC地址和UUID也就能够确定到具体是哪一台蓝牙设备了,这两者合起来就是蓝牙的唯一身份标识。

经典蓝牙:经典蓝牙建立连接的方式实际上就是Socket的连接的建立。只不过这里不是直接用Socket,而是BluetoothSocket。获取BluetoothSocket的方式也很简单,利用搜索找到的BluetoothDevice,调用其方法createRfcommSocketToServiceRecord(UUID)。最后,使用获取到的BluetoothDevice调用其方法connect()就建立了经典蓝牙设备之间的连接通道。

低功耗蓝牙:低功耗蓝牙则用了一种看起来比较怪异的方式建立连接。

——关于BLE的一些基本概念——

Generic Attribute Profile (GATT)

通过BLE连接,读写属性类小数据的Profile通用规范。现在所有的BLE应用Profile都是基于GATT的。

Attribute Protocol (ATT)

GATT是基于ATT Protocol的。ATT针对BLE设备做了专门的优化,具体就是在传输过程中使用尽量少的数据。每个属性都有一个唯一的UUID,属性将以characteristics and services的形式传输。

Characteristic

Characteristic可以理解为一个数据类型,它包括一个value和0至多个对次value的描述(Descriptor)。

Descriptor

对Characteristic的描述,例如范围、计量单位等。

Service

Characteristic的集合。例如一个service叫做“Heart Rate Monitor”,它可能包含多个Characteristics,其中可能包含一个叫做“heart rate measurement”的Characteristic。

这里举个例子,例如现在需要使用一个智能手机作为主设备去连接一个作为从设备的智能手环,那么,此时这个作为主设备的智能手机连接过程中实际是一个客户端(Client),而作为从设备的智能手环在此过程中则是服务端(Server)。这里的主设备和从设备,客户端和服务端一定要区分清楚。

想要和一台BLE从设备建立连接,一般是某个智能设备,例如智能手环、智能灯泡之类的。如果使用智能手机作为测试平台,其硬件条件是,蓝牙得至少是低功耗蓝牙版本,然后安卓系统的话,至少得是Android 43以上系统才行,因为Google在Android 43以上才做了BLE主设备的支持,如果想将智能手机作为BLE从设备,则必须在Android 50以上才行。

具体建立GATT连接的顺序则是,首先通过BluetoothAdapter的getRemoteDevice(address)方法获取大相应BLE从设备的BluetoothDevice,其中的address为目标蓝牙设备MAC地址。然后通过此BluetoothDevice的connectGatt(this, false, mGattCallback)方法获取设备连接。

此时的连接,只能够进行监听,也就是获取到当前BLE从设备广播出来的数据。

4 数据通信

经典蓝牙:当建立连接后,就可以直接使用BluetoothSocket的getOutputStream()方法获取输出流写入需要发送的数据。读取发送回来的数据,则是调用BluetoothSocket的getInputStream()方法获取输入流读取。这点和Java中的Socket通信几乎是一模一样。

低功耗蓝牙:想要实现主设备对从设备的数据发送,则需要直接读取获取到的从设备的Characteristic,而Characteristic又是Service下面的一层,所以 *** 作顺序是:

(1)通过BLE从设备相应的Service_UUID获取对应的BluetoothGattService,获取方法是:使用BluetoothDevice的connectGatt(this, false, mGattCallback)方法返回的BluetoothGatt对象,调用BluetoothGatt的方法getService(Service_UUID)获取相应的BluetoothGattService;

(2)调用BluetoothGattService和对应的Characteristic的写入UUID获取相应的BluetoothGattCharacteristic,获取方法是:调用BluetoothGattService的getCharacteristic(Characteristic_UUID)方法获得;

(3)设置需要发送的命令值,调用BluetoothGattCharacteristic的方法setValue(value)进行设置,其中value一般为byte[];

(4)最后,使用BluetoothGatt的写入方法writeCharacteristic(TxChar)完成命令发送。

可以看到,想要实现BLE的数据通信,步骤相当繁琐,这里只是做一个简单的概念理解,如果想要获取到BLE从设备的返回值,还需要设置Notification,然后调用BluetoothGatt的readCharacteristic(characteristic)方法进行数据的读取,这里不做详细说明了,放在以后详细说明BLE通信的时候再做解释。

蓝牙的选用

既然有经典蓝牙和低功耗蓝牙之分,我们在设计物联网产品和智能硬件产品的时候,如何选择呢?

经典蓝牙:蓝牙最初的设计意图,是打电话放音乐。30版本以下的蓝牙,都称为“经典蓝牙”。功耗高、传输数据量大、传输距离只有10米。

低功耗蓝牙:就是BLE,通常说的蓝牙40(及以上版本)。低功耗,数据量小,距离50米左右。

传声音的,用经典蓝牙:

如蓝牙耳机、蓝牙音箱。蓝牙设计的时候就是为了传声音的,所以是近距离的音频传输的不二选择。

电池供电、连手机APP的,用BLE:

如共享单车锁、蓝牙智能锁、蓝牙防丢器、蓝牙室内定位,是目前手机和智能硬件通信的性价比最高的手段。直线距离约50米,一节5号电池能用一年,传输模组成本10块钱,远比WIFI、4G等大数据量的通信协议更实用。

又要声音又要数据的,用双模蓝牙:      双模蓝牙,就是同时支持经典蓝牙音频和低功耗蓝牙。

如智能电视遥控器、降噪耳机等。很多智能电视配的遥控器带有语音识别,需要用经典蓝牙才能传输声音

传大数据量的,用经典蓝牙:      如某些工控场景,使用Android或Linux主控,外挂蓝牙遥控设备的,可以使用经典蓝牙里的SPP协议,当作一个无线串口使用。速度比BLE传输快多了。

远距离的,不用蓝牙。      固定供电的、不考虑功耗的、要传超过几十米距离的、要传高速数据的,这些都不适合蓝牙。远距离的可以用2G、4G、NB-IOT,大数据量的可以用WIFI。

没有这个词,估计是印刷得不清楚吧?
可能是PILOT,
n 飞行员,领航员,引航员
vt 领航,驾驶,向导
adj 引导的,示范的
例句与用法:
1 The pilot landed the plane safely
驾驶员使飞机安全降落。
2 A pilot must be awake to the changes in the weather
飞行员必须警觉天气的变化。
3 He is an airline pilot
他是民航驾驶员。
4 The pilot charted the plane's course
飞行员制定了飞机的航线。

物联网的应用实例与效益 摘要 十年前,麻省理工学院在同 EANUCC 组织(全球统一标识系统)共同进行一 个研究项目时,创造了"物联网"一词该项目和全球产品电子代码管理中心的 成立促生了以 RFID 为基础的解决方案, 使供应链发生了革命性的变化 据预测, 到 2005 年,RFID 标识的物体和物联网将会无处不在 物联网的开发是围绕 RFID 的应用进行的,然而依托的技术不仅仅是 RFID物 联网的合理结构是金字塔型的,是根据需要,合理性,局限性和商业应用案例和 效益在身份标识,数据存储和能力上结构分层的,其合理性取决于经济效益,其 特点和行为设计的合理性也取决于实际效益 目录 1 介绍 十年前,麻省理工学院(MIT)与物品编码组织 EANUCC 共同开展了一个研究项 目,创造了物联网一词该项目和全球产品电子代码管理中心的成立促生了以 RFID 为基础的解决方案, 使供应链发生了革命性的变化 采用这种技术和手段, 将使供应链成本降低 10%,还能使我们同家庭中的日常生活物品相互交流在我 们去超市的时候,家里的冰箱会告诉我们缺少些什么,食品自己会告诉我们它们 什么时候过期,商品会自行防盗,我们则不必在超市的收款台前排队这些有说 服力的例子那时让我们预测, 2005 年, 到 RFID 标识的物体和物联网会无处不在 但现在已经 2009 年已经过去了,但我们还在等待会发生些什么为什么我们还 在等待呢物联网的实际效益在哪里呢 从社会经济方面看,保健,环境,合法监听,隐私,安全,技术的获取和包容 以及政府的作用,都将影响到物联网的应用,但未来物联网推广的最重要因素是 商业案例没有商业案例就没有商业 关于物联网的争论,一般是围绕着什么时候技术才会无处不在和遍布各处的问 题进行的,没有考虑如果实现了技术无所不在,那么范围有多大,哪些技术是核 心的问题本文用商业案例推理方法进行讨论,并向一些物联网方面的基本假设 提出了挑战,本文的结论是,物联网的架构实际上与现在的一些假设是不同的, 它更具结构性,更实用,具有金字塔式的通信能力和选择能力,它不是一堆放在 一起通过 RFID 器件互相谈话的物体 2 物联网的概念 MIT1999 年的论文在其网站上已经保留好多年了 所说的"物联网"是"自 MIT 动身份识别中心的愿景", 这个愿景就是创造一个计算机无需人的帮助就能去识 别的全球环境 麦克法兰在上述论文中解释了基于控制的 MIT 自动身份识别的概 念他说: 智能产品是一种物理的,以信息为基础的零售商品,它们 (1)具有独特的身份; (2)能够有效地同周边环境交流; (3)能够保留和存储自己的数据; (4)具有能描述产品特点,生产,使用和处置需求的语言; (5)能持续地参与或决定与产品命运相关的行为 重要的是要注意到,MIT 的研究是针对供应链的,它说的"每个东西都贴上标 签"并不意味着"所有的东西"都贴上标签麦克法兰说的很清楚,它们是以信 息为基础的零售商品花园里的鼹鼠,树上的知更鸟和亚马逊雨林中的树木并不 在这"每样东西"的范畴之内他们所做的切合实际的排除表明,物联网的初始 概念是很清楚的, 是人为限定的, 是有范围的 它只适应于供应链上传送的东西 全球产品电子编码管理中心和 RFID 产业已经认识到, 这种限制会使我们错失良 机,降低物联网的应用范围和影响这与"计算机无需人的帮助就能理解世界" 的概念显然是不相符合的,因为我们不能假定每样东西都是零售商品,这种假定 是不可能的,而且永远不可能现在是根据可能做到的事情重新评价和建立这个 概念的时候了 要建立全面的或局部的物联网,需要有投资,在很多情况下,这种投资的规模 很大只有有了适宜的商业范例,才会有投资而商业范例正是目前所缺少的 3 商业范例假设 物联网不仅是一个学术概念,而且有市场需求,了解这一点是至关重要的 这就是说,物联网是一种真正的颠覆性创新,它能对社会产生巨大影响但物 联网要获得成功, 必须要有实实在在的应用案例, 不能光宣传它如何如何了不起, 或觉得它会带来多大的股票价值 物联网的推广目前还受限于技术,现在可用的技术是 RFID 过去在供应链和其他一些商务模型如资产管理中主要采用一维条形码, 这是 一种综合标识符,不能区分具体的物品两维条形码含有更多的数据,但一旦印 刷上去, 就不能更新 RFID 发射器, 近场通信移动电话, 采用脉冲无线电 (UWB) 通信技术的定位系统, 蓝牙或紫峰无线传感器和其他一些无处不在的计算技术能 持续地从周边环境中采集数据并进行处理, 这些技术可以带来优势的商业应用案 例 虽然物联网的开发是围绕 RFID 的应用进行的, 但构成物联网的是连续和密集的 实时数据流,并不是 RFID 器件本身,物联网是物理世界的反映,同物理世界一 样,物联网用户市场中商务案例的成功是商务推广的先决条件 1999 年开始建立物联网时,MIT 预测,到 2005 年会出现物联网 RFID 标签的无 处不在的应用,到 2006 年,标签的价格会降低到 5 美分学术界的预测总是太 过乐观,从经济学的角度看,这个预测其实是靠不住的 当然,MIT 可以很有道理地指出,今天的标签,比他们当时设想的标签要复杂 多了,但标签设计中任何增加的功能都是用户需要的,没有这样的进步,就没有 投资的效益但价格毕竟决定着设计的合理性,限制着标签的普及应用 如果没人以 MIT 预测的价格大量购买这些标签,就不会有用户应用案例 MIT 所描述的物联网是在超市中无处不在地使用标签,MIT 预计,所有的零售商 品都会贴上标签, 所有的家庭用品和办公用品都会贴上标签, 它们能够相互通信, 至少在询问时能够应答 2003 年,威廉姆斯在《产品标识的未来》一文中指出,当商店中的商品以低于 05 美元的价格促销时,标签的成本无论是 028 美元还是 5 美分,都将是极大 的成本负担,一般会使商品利润低于 10%,在这个价格水平上使用 RFID 标签就 不划算了现在不行,永远都不行把 MIT 所预测的标签价格下降(为达到市场 普及)同预测的标签使用量相比较,可以看出,在很多年内,标签的整体商业价 值很难增长标签厂商投入很大的资金,承担很大的风险,卖出几十亿的标签, 却只能赚到很少的钱标签厂商以现在的价格每年只卖出几百万个标签这种商 业模式是行不通的,而且永远行不通,因为标签制造厂商在目前商业模式的生命 周期内是不会把标签的价格降低到微不足道的水平的 业界预测,聚合物 RFID 标签有可能在 10 年内改变这种状况但是今天你不可 能根据 10 年之后可能发生的事举出商业应用的例子这些实际因素对物联网的 建立和效益的发挥有巨大的影响也就是说,在每件物体上贴上标签,也许只是 一种空想,永远不可能成为现实(我曾经说过,皇帝是没有新衣的) 那么物联网的概念是不是就错了,是不是就一无可取了呢我希望不是尽管人 们提出的物联网的概念和架构有某些缺陷,但它还是有很大的潜在效益的 4 物联网依托的技术不仅仅是 RFID 在可预见的未来建立可行的物联网架构是至关重要的那种认为给遍布各处的 每个物体都贴上 RFID 标签就能形成物联网的观点是经不起实践检验的,是不会 有商业应用实例的在目前阶段,我们必须质疑关于物联网的一些基本假设麦 克法兰提出的物联网概念,至少有两点是站不住脚的,是经不起实践检验的 首先,麦克法兰声称的物联网的目标是"建立一个计算机无需人的帮助就能识 别世界的普遍环境",但他没有从商业应用的角度进行考虑,也就是说,人们为 什么需要这样一种环境我们的问题是,它的应用合理性在哪里难道就因为它 在技术上可行就不去考虑合理和需求吗 如前所述,不是器件,而是连续的,高密度的实时数据流形成了可行的商业应 用案例,赋予了信息系统相关的,实时的,具体的数据,建立了物联网我们必 须清楚地认识到,物联网的商业范例不是 RFID 器件的商业范例,而是合理获取 信息的商业范例,RFID 系统只是一种提供信息的手段,是一种最适宜的,成本 效益最高的技术 第二,对于早先的智能产品概念,麦克法兰虽然提出了 5 个特点,但缺少商业 案例的支持麦克法兰说的 5 个特点是,独特的身份标识,与周边环境交流,存 储数据,使用标准的语言和不断地参与或决定自己生命周期 最后一个特点是要赋予器件智能的原因,其他一些特点是被动存储器件也具有 的,只要它们能被连接 如果你接受这种观点,那么在很多情况下,有效地与周边环境通信,可能就简 单意味着使身份和数据可以被询问, 而这通过被动型的数据存储就能实现 的确, 早期物联网构想中的 RFID 技术,全部是被动型 RFID 标签,这些标签只有在被询 问时才能显示数据,与条形码唯一的不同是,它们的数据存储在集成电路存储器 上,可以被更新,它们不能对自己的命运做出决定所以,麦克法兰的理论不仅 没有清晰的商业案例支持,而且其初始概念在逻辑上就讲不通我们经过思考后 得出的结论是,有些物品需要通信,而另一些物品只需要被询问,有些数据是永 存的,另一些数据是变化的这个结论显然是毋庸置疑的 独特的身份对于物联网来说是非常重要的,但也需要从商业效益的角度考虑问 题多年来,条形码成功地标识了批量身份,但不能标识每个产品的身份把批 量标识扩展到分类标识是必要的,例如标明整批货物中每一件的售出时间但如 果没有必要,如果成本太高,就不需要总是这样做当然在有些情况下,是需要 对每个商品做独特标识的,例如商品的重量,历史等所以,物联网的许多功能 是可以用比较便宜的技术实现的,例如已广泛应用的条形码我们认为,物联网 的合理结构是金字塔型的,是根据需要,合理性,局限性和商业应用案例和效益 在身份标识,数据存储和能力上结构分层的将来许多物品的信息仍然会保存在 条形码上 现在的条形码仅仅是标识类别, 例如某厂商生产的 450 克的烤豌豆 如果用条形码区别标识每件产品, 就不能像现在这样把条形码统一印刷在产品包 装袋上,把这样的产品纳入物联网中,需要确定数量并判断投入的合理性 在每个产品上应用 RFID 技术现在有很好的例子例如,英国著名的玛莎百 货公司用这种技术减少了正品商品退货的欺诈率,在这种情况下,商品价格稍高 一点是合理的另一个例子是在刮脸刀片上安放防盗窃的电子商品监测 EAS/RFID 标签,从商业效益上看也是合理的按日期销售的信息是非常重要的 信息,新鲜食品可以在物联网世界中找到新的市场机会,可以存储在零售商的货 架上, 可以找到潜在的家庭和办公室最终用户, 也可以找出产品的新特点和用途, 让产品销售的压力不全放在既定用户身上,另外还能给冰箱制造商做广告,促进 冰箱的销售在物联网世界中,市场营销也能产生实实在在的效益,消化 RFID 的成本 例如, 葡萄酒和灌装啤酒的厂商由于与销售市场更接近, 可以降低价格, 从而消化标签的成本不过我们必须做出示范例子,才能在物联网中推广 5 物联网的结构 如果你接受现在的观点,那么就会顺理成章地得出这样的结论,即只有需要 通信的东西才会装上通信器件在上述金字塔的顶端,是人与人之间的对等机器 交流,例如我的个人数字助理和你的计算机之间的交流,在采用对等设备成本上 不划算的地方则布置 RFID 标签,因为 RFID 标签是满足基本通信需求的成本最 低的手段, 这是第二个层次, 在这个层次之下, 是被动型的数据存储, 如条形码, 它只能保存数据和身份,在这个层次,很多东西仍然是不可辨认和不可识别的 我们定义的未来的物联网还有一点与麦克法兰的提法不同,麦克法兰认为, 物体"能连续地参与和决定自己的命运",我们则认为,只有在感知物体直接或间 接地发出指令的时候(在金字塔的顶端) ,或智能物体发出指令的时候(在第二 层次) ,才会有通信即便在第二层次,智能物体一般也是由一个感知器件控制 和预先决定的(在物联网中,所有的东西,包括人,都是物体) ,因为只有更高 的层次,才能做出判断效益的决策 所以,物联网是在一个个案例的基础上运行的,由感知物体从成本上逐个判 断,处理代价是否能适合需求,物联网是由这些案例构成和限制的 物联网中的商务案例是靠 RFID 标签,智能标签或智能卡运行的静态信息 如产品身份,重量,售出时间,产地等,可以存储在条形码上,也许是两维条形 码,用移动设备和漫游设备可以阅读条形码 我们不需要给每个物体都装上主动通信的器件, 我们要做的是提高阅读器扫描被 动信息的能力,如扫描条形码,使我们在询问时能获得信息,这样做是因为我们 有应用案例的强大支持我们很多人已在超市使用自我扫描技术付账了,许 多移动电话都能阅读条形码虽然让冰箱通过 RFID 标签自动向超市询问存货和 自动付账听起来很有吸引力, 但其实还有一些更为廉价的方法能达到同样的效果 许多此类物联网可以用手动扫描条形码的方式实现,例如,用扫描器把冰箱 里的食品显示在冰箱上的屏幕上屏幕上还可以显示食品的售出时间,发出过期 报警如果超市的付账柜台上也储存有售出日期的信息,就可以用现在的 Wi-Fi (无线保真)技术把这些信息传送到用户的个人数字助理和电话上,用户的冰箱 上或家庭电脑上,也可以传送到家里各处放置的,不见得放在冰箱里的已购买的 食品上 我们所提出的物联网的架构是这样的,它并不是把世界上所有的物体都以对 等的方式连接在一起,而是给有些物体贴上 RFID 标签,有些物体贴上条形码 在我们的物联网架构中有些物体有询问能力, 还有些物体则仍然处于未连接状态 物联网的主要功能是处理信息,这些信息的获得并不完全靠 RFID 标签当 然 RFID 标签将会发挥作用,但 RFID 提供的信息只是物联网的一个组成部分 在物联网中, 不是简单地给每件物体都做出身份标识 我们把物品分成了若干类, 这种分类构成了前述的金字塔梯级结构, 每个梯级采用的信息获取和发送技术都 是不同的也许我们可以给出这样的梯级结构: A 级:带有一般的固定静态数据的物品(如一听西红柿) B 级:带有分类静态数据的物品(如标有售出日期的生菜) C 级:带有独特的固定静态数据的物品(如标有特别分量,产地和保质期的一片 肉) D 级:带有可变综合静态数据的物品(如带有温度感应器的冷冻食品综合标识包 装) E 级:带有可变分类静态数据的物品(如运载箱装商品的货盘) F 级:带有一般临时静态数据的物品(如卡车载的货) G 级:带有可变独特静态数据的物品(道路通行费标签;带有温度感应器的独特 标识的物品) H 级:带有分类可变数据的物品(如车辆) I 级:带有特殊可变数据的物品(如冰箱,音响系统,中央空调,房间报警系统, 车辆等) J 级:智能物品(如计算机,个人数字助理) K 级:有感知的物体(例如人) 这样的分类,是按本文的思路提出的,并不能算是正式的分类下图所示为 物联网的金字塔架构: 我们并不打算把世界上的每个物体都标识在这个金字塔架构图中世界上的 大多数物体—田野里的树木,沙滩上的躺椅,树上的鸟儿等都是不需要通过物联 网来交流的在可预见的未来,现实世界中的大多数物体都不会连接在一起在 物联网中,我们可以把这些物体称为未标识类物体 从金字塔的底部上行, 我们会发现, 紧邻底层 A 的那几个层次中的物体可以被识 别,但是被动式的,这些物体被询问是可以应答,但不能主动通信B,C,D 层次中的物体一般是用条形码标识的,B 层次是简单的综合标识,例如一听西红 柿C 层次是类似瓜果梨桃一类的物品,它们往往有同样的身份,但售出日期不 同 层次的物品是有单独特点的, D 例如每个产品都有不同的重量 在物联网中, 我们可以把这一层次中的物品叫做被动可标识物品增加的信息都不是特殊的, 产品的重量是不变的这一层次中使用的 RFID 标签都是被动型标签 E 层次的数据来自传感器,传感器是被动的,在询问时可以应答,但如果某 些参数(例如温度)超出了规定的限度,也能主动通信,我们把 E 层次的物品叫 做具有激发通信能力的物品, 当然只有在成本效益合理的情况下才采用这种技术 这些物品的数据可变但也是被动的,不过与 D 层次中的可变被动数据(例如一 公斤香肠)完全不同 D 层次和 G 层次的物品都有组合的数据,D 层次中是综合的可标识物品,G 层次中的是特殊的可标识物品例如,道路通行收费标签可在车辆行程的入口和 出口被读出 这两个层次的物品一般不能通信, 它们往往是被询问时才做出反应, 但不能排除它们具有通信功能我们把这种物品叫做"载有其他物品数据的物品" H 层次的物品则不仅有独特的身份,而且有独特的寻址功能,它们能主动通信, 也能对询问做出反应,可能还可以处理大量的瞬间变化数据智能汽车就是一个 例子我们把这个层次的物品叫做"为其他物品服务的物品" 在金字塔的顶端,是真正的智能器件,如计算机或有感知的物体(例如人) , 这些物体有能力主动通信和主动询问 智能物体和感知物体之间的根本区别在于, 智能物体的运行决定是由感知物体控制的,或者说,智能物体的行为是由感知物 体(例如人)设定的所以,在物联网金字塔的顶端,总是感知物体在控制,不 是物品自己做自己命运的决策这种理解与 MIT 最初的概念是根本不同的我 们认为,只有采用这种梯度层次架构,物联网才能产生合理的实际效益,才能获 得投资 我们当然可以做出不同的分类,分出不同的级别,但问题的关键不在这里 关键是物联网不会,而且永远不会成为和人与人之间的网络一样的,具有自主意 识的网络(采用 RFID) ,物联网将是一个由具有不同特性和能力的物品组成的一 个梯度分层架构;它的性质是由应用案例和实际效益决定的,采用的技术是否合 理也是由实际效益决定的(有时只能用 RFID) 所以,在物联网中采用 RFID 的具体效益是反映在多个结构层次上的,其合 理性取决于济效益,其特点和行为设计的合理性也取决于实际效益(尽管可 能会有额外的下游效益,或以后会发现效益,但这不属于初始的效益) 物联网 中物品能力的合理性也是由具体的效益决定的 物联网本身是不会产生什么奇幻 的济效益的,世界上的许多物品将仍然处于物联网之外 6 结论 为发挥物联网的潜在效益,需要着重注意新型的因特网和已有数据的 *** 控,而 数据的传输技术,虽然很重要,却是次要的考虑因素需要制定物品层次之间交 流的规则,需要开发数据采集/交换/交易的网络服务如果物联网有一天真的出 现了,那么首先要关注的是数据管理,转换和处理的标准,而不是什么特殊的空 间接口总之,尽管 RFID 在物联网中有重要作用,但它毕竟只是物联网中的一 种数据传递技术,要形成商业市场,就要开发产品(软件系统) ,使因特网中的 物品能动起来,我们要更多地关注使物联网具有交流功能的网络服务我们需要 有标准化的服务标准制定组织,如 CEN,ISO,ETSI,应发挥重要作用


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10469945.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存