SPSS相关分析

SPSS相关分析,第1张

现实中,事物之间的联系是错综复杂的,而事物之间的关系可以看作两类:一类是 函数关系 ,一类是 相关关系 。函数关系指的是变量 一一对应 的确定关系,相关关系指的是两个变量之间存在的不确定的 数量关系

相关分析主要研究相关关系。

在进行相关分析前,最好先绘制 散点图 ,以初步判断变量之间是否存在相关趋势、该趋势是否为直线趋势。

相关分析中最常用的是二元变量的相关分析,即 简单相关分析
三个及三个以上变量之间的关系称为 复相关 ,研究一个因变量和两个自变量之间的关系;
控制一个变量研究其他两个变量之间的关系称为 偏相关
不是通过相关系数,而是通过相似性或距离描述变量之间的关系的方法称为 距离相关分析

不同类型的变量数据,应采用不同的相关分析方法。 Pearson相关 适用于数值变量; Spearman相关 Kendall's tau-b相关 适用于顺序变量;对于分类变量,一般采用 列联表 的方式进行χ²检验的方法研究其相关性。

Pearson相关系数适用于测度两数值的相关性。数值变量的特点是取值用数字表示,即可以进行运算而计算出差异的大小。则样本相关系数计算公式为:

在实际问题中,样本的相关系数计算具有随机性,因此需要对其进行显著性检验。

在X、Y均服从正态分布,及原假设(ρ=0)为真时,统计量

服从自由度为n-2的T分布。

Spearman相关系数又称 秩相关系数 ,适用于测度两顺序变量(等级、秩次)的相关性。 它对原始变量的分布不做要求 ,属于非参数统计方法。通俗地讲,“顺序变量”就是变量的排序等级,如1-非常不满意,2-满意,3-非常满意等。

由于Spearman相关系数可以套用Pearson相关系数的公式,在此不再重复计算式和统计量公式。值得一提的是,当n>30时,检验统计量也可以近似的用

来计算。

Kendall相关系数有3种形式,它也是测度两顺序变量的相关性。采用的仍是 非参数 的方法,它利用变量值的秩数据,计算 同序对 数目U和 异序对 数目V。

对Kendall相关系数也需要进行显著性检验。如果n≤30,可以直接利用等级相关统计量表,SPSS会自动给出相伴概率值P。如果n>30,检验统计量也可以用近似服从正态分布的Z值计算:

步骤:分析->相关->双变量,选入需要分析的变量,如图:

在“相关系数”框组中,默认的是Pearson相关系数,也可以根据需要选择Spearman相关系数和Kendall's tau-b相关系数。

输出结果:

由此可见,在001的显著性下,交易量和响应时间的相关性显著。一个 表示005的显著性;2个 表示001的显著性。

在很多情况下,当影响某个变量的因素过多时,常假定其中某些因素不变,考察其他因素的影响。

偏相关分析 假定变量之间的关系均为线性关系 ,没有线性关系的变量不能进行偏相关分析。因此在进行偏相关分析之前,可以先通过计算Pearson相关系数来考察线性关系。

步骤:分析->相关->偏相关,选入需要分析的变量和需要控制的变量,如图:

输出结果:

由表可知,在排除了成功率的干扰后,相关系数0650<0899,可见简单相关分析有夸大的成分。交易量和响应时间的相关性属于弱相关。

简单相关分析和偏相关分析都是研究两个变量之间的 线性关系 ,但由于实际问题的复杂性,我们可以通过距离相关分析来考察变量之间是否具有 相似性 ,进而研究相关关系。

距离相关分析一般不单独使用,而是作为聚类分析和因子分析等统计方法的 预分析过程

步骤:分析->相关->距离,选入需要分析的所有变量,如图:

此时我们先选用“基于变量间”计算距离,选取相似性,默认为Pearson相关系数。

一般而言,考察变量之间的相似性采用相似性测度;而对于样本之间的相似性采用不相似性测度。

输出结果:

输出结果为3个变量间的相似度矩阵。可以看出交易量和响应时间的相关系数同前计算结果一致。也可以进行变量间的相关程度计算。

从技术架构上来看,物联网可分为三层:感知层、网络层和应用层。感知层由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,其主要功能是识别物体,采集信息。 网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。
从发展来说物联网4大关键领域1 RFIDRFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签, *** 作快捷方便。 RFID是一种简单的无线系统,只有两个基本器件,该系统用于控制、检测和跟踪物体。系统由一个询问器(或阅读器)和很多应答器(或标签)组成。 2传感网传感网的定义为随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的无线网络。3 M2M简单的说,M2M是将数据从一台终端传送到另一台终端,也就是就是机器与机器(Machine to Machine)的对话。但从广义上M2M可代表机器对机器(Machine to Machine)人对机器(Man to Machine)、机器对人(Machine to Man)、移动网络对机器(Mobile to Machine)之间的连接与通信,它涵盖了所有实现在人、机器、系统之间建立通信连接的技术和手段。 4 两化融合两化融合是信息化和工业化的高层次的深度结合,是指以信息化带动工业化、以工业化促进信息化,走新型工业化道路;两化融合的核心就是信息化支撑,追求可持续发展模式。

效度分析指尺度量表达到测量指标准确程度的分析。 下面我们主要从下面四个方面来解说:

[if !supportLineBreakNewLine]

[endif]

实际应用

理论思想

建立模型

[if !supportLineBreakNewLine]

[endif]

分析结果
[if !supportLineBreakNewLine]

[endif]

一、实际应用

[if !supportLineBreakNewLine]

[endif]

效度分析用于研究题是否有效地表达研究变量或维度的概念信息,通俗地讲,即研究题设计是否合理或题表示某个变量是否合适。通常情况下,效度分析只能分析量表题。
[if !supportLineBreakNewLine]

[endif]

二、理论思想
效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型。 内容效度( Face Validity ):

内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。对内容效度常采用逻辑分析(专家法)与统计分析相结合的方法进行评价。
准则效度( Criterion Validity ):

准则效度又称为效标效度或预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则(效标),分析问卷题项与准则的联系,若二者相关显著,或者问卷题项对准则的不同取值、特性表现出显著差异,则为有效的题项。评价准则效度的方法是相关分析或差异显著性检验。在调查问卷的效度分析中,选择一个合适的准则往往十分困难,使这种方法的应用受到一定限制。
结构效度( Construct Validity ):

结构效度是指测量结果体现出来的某种结构与测值之间的对应程度。架构效度分析采用的方法是因子分析。有学者认为,效度分析最理想的方法是利用因子分析测量表或整个问卷的架构效度。因子分析的主要功能是从量表全部变量(题项)中提取一些公因子,各公因子分别与某一群特定变量高度关联,这些公因子即代表了量表的基本架构。透过因子分析可以考查问卷是否能够测量出研究者设计问卷时假设的某种架构。
在因子分析的结果中,用于评价架构效度的主要指标有 累积贡献率、共同度和因子负荷。累积贡献率反映公因子对量表或问卷的累积有效程度,共同度反映由公因子解释原变量的有效程度,因子负荷反映原变量与某个公因子的相关程度。 为了提升调查问卷的质量,进而提升整个研究的价值,问卷的信度和效度分析绝非赘疣蛇足,而是研究过程中必不可少的重要环节。
效度分析有多种方法,其测量结果反映效度的不同方面。 一般来说,学科测验主要看内容效度,心理测验主要看结构效度。
[if !supportLineBreakNewLine]

[endif]

三、建立模型

[if !supportLineBreakNewLine]

[endif]

效度分析评估步骤:

[if !supportLineBreakNewLine]

[endif]

第一:KMO系数,取值范围在0-1之间,越接近1说明问卷的结构效度越好。 

第二:巴特利球形检验的显著性,如果小于005,我们也可以认为问卷具有良好的结构效度。

第三:如果整体问卷有效,仍然需要进一步评估问题合理性,评估问题合理性需要借助成分矩阵。

效度分析案例1:

[if !supportLineBreakNewLine]

[endif]

题目:以下是一个医学生职业精神量表,该量表包括7个方面,29道题目,测试了不同专业的100名大学生,试对该量表进行信度分析。

一、数据输入
二、 *** 作步骤 1、进入SPSS,打开相关数据文件,选择“分析”|“相关”|“双变量”命令2、选择进行信度分析的变量。在将V1—V29及总分放入变量框中,选择“皮尔逊”(Pearson)相关系数,点击“确定”即可。
3、其余设置采用系统默认值即可。单击“确定”按钮,等待输出结果。
效度分析案例 2 :
题目:以下某研究者在一项中学知识管理与学校效能关系的研究中,自编“学校知识管理量表”,此表共有19题,为探究量表的可信效度及题项的适切性,随机抽取200人进行测试,求此19题的结构效度如何?试对结构效度进行分析。

一、数据输入
二、 *** 作步骤 1、进入SPSS,打开相关数据文件,选择“分析”|“降维”|“因子分析”命令2、选择进行信度分析的变量。在将c1—c19及总分放入变量框中。
3、点击“描述”,勾选“系数”和“KMO和巴特利特球形度检验”。

4、点击“提取”,选中基于特征值大于1。
5、点击“旋转”,勾选最大方差法与旋转后的解。
6、其余设置采用系统默认值即可。单击“确定”按钮,等待输出结果。

[if !supportLineBreakNewLine]

[endif]

四、结果分析

一、案例1分析如果量表的内容效度较高,则每题得分与总得分的相关性均应该较高,判定标准为r>04,本例V1—V29中,V4与总分的相关性r=0362<04,V8与总分的相关性r=0373<04,V8与总分的相关性r=0364<04以此类推,因此建议考虑删除V4,V8,V10。
二、案例2分析

1、KMO检验和巴特利特检验结果KMO=0855>05,样本量足够,球形度检验,P=0000<005,符合球形度检验。结合两项指标,本例适合进行因子分析

2、解释的总方差可以知道,第一步纳入的变量是质量,到第三步所有变量全部纳入,且从显著性值均为0可以看出,逐步判别没有剔除变量。
3、旋转后的成分矩阵旋转后成分矩阵,结果发现19道题目在结构上分成4类,其中c12自成1类,因此c12应该删除。

4、删除c12后的总方差解释和旋转后的成分矩阵结果可见旋转后成分矩阵正好落在3个成分之上,并且每个成分里面的题目设置符合设置预期。

(获取更多知识,前往gz号程式解说)

数据是平台运营商的重要资产,可能提供API接口允许第三方有限度地使用,但是显然是为了增强自身的业务,与此目的抵触的行为都会受到约束。
收集数据主要是通过计算机和网络。凡是经过计算机处理的数据都很容易收集,比如浏览器里的搜索、点击、网上购物、……其他数据(比如气温、海水盐度、地震波)可以通过传感器转化成数字信号输入计算机。
收集到的数据一般要先经过整理,常用的软件:Tableau和Impure是功能比较全面的,Refine和Wrangler是比较纯粹的数据整理工具,Weka用于数据挖掘。
Hadoop是一个能够对大量数据进行分布式处理的软件框架。用于统计分析的R语言有个扩展R + Hadoop,可以在Hadoop集群上运行R代码。更具体的自己搜索吧。
可视化输出的工具很多。建议参考wikipedia的“数据可视化”条目。
Tableau、Impure都有可视化功能。R语言也可以绘图。
还有很多可以用来在网页上实现可视化输出的框架或者控件。
大致基于四种技术:Flash(Flex)或者JS(HTML5)或者Java或者ASPNET(Silverlight)
Flash的有Degrafa、BirdEye、Axiis、Open Flash Chart
JS的有Ajaxorg、Sencha Ext JS、Filament、jQchart、Flot、Sparklines、gRaphael、TufteGraph、Exhibit、PlotKit、ExplorerCanvas、MilkChart、Google Chart API、Protovis
Java的有Choosel、google-visualization-java、GWT Chronoscope、JFreeChart
ASPNET的有Telerik Charts、Visifire、Dundas Chart
目前我比较喜欢d3(Data-Driven Documents),图形种类丰富,有交互能力,你可以去d3jsorg看看,有很多种图形的demo。

对应分析也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法。 下面我们主要从下面四个方面来解说:

[if !supportLineBreakNewLine]

[endif]

实际应用

理论思想

建立模型

[if !supportLineBreakNewLine]

[endif]

分析结果
[if !supportLineBreakNewLine]

[endif]

一、实际应用

对应分析法 可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系 。当所涉及的 分类变量类别较多或者分类变量的个数较多 的时候,我们就需要用到对应分析。主要应用在市场细分、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。
[if !supportLineBreakNewLine]

[endif]

二、理论思想
由于指标型的因子分析和样品型的因子分析反映的是一个整体的不同侧面,因此它们之间一定存在内在的联系。如果能够有效利用这种内在联系所提供的信息,对更全面合理地分析数据具有很大的帮助。在因子分析中,如果研究的对象是样品,可采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。但是,因为这两种因子分析方法必须分别对样品和变量进行处理,所以这两种分析方法往往存在着相互对立的关系,为我们发现和寻找它们的内在联系制造了困难。而对应分析通过一个过渡矩阵Z将两者有机地结合了起来。 对应分析的基本思想是将一个联列表的行和列中各元素的比例结构,以点的形式在较低维的空间中表示出来。 首先,给出指标变量点的协差阵A=Z,Z和样品点的协差阵B=ZZ’,由于两者有相同的非零特征根,所以可以很方便地借助指标型因子分析而得到样品型因子分析的结论。如果对每组变量选择前两列因子载荷,那么两组变量就可以画出两个因子载荷的散点图。由于这两个图所表示的载荷可以配对,于是就可以把这两个因子载荷的两个散点图画到同一张图中,并以此来直观地显示各行变量和各列变量之间的关系。

[if !supportLineBreakNewLine]

[endif]

三、建立模型
[if !supportLineBreakNewLine]

[endif]

数据条件:

[if !supportLists]§ [endif]不能用于相关关系的假设检验
对应分析案例:

[if !supportLineBreakNewLine]

[endif]

题目:费希尔在1940年首次介绍列联表资料时使用的是一份关于眼睛颜色与头发颜色的调查研究数据。该研究数据包含了5387名苏格兰北部的凯斯纳斯郡的小学生的眼睛颜色与头发颜色,如下表所示。试用对应分析方法研究眼睛颜色与头发颜色之间的对应关系。

一、数据输入
二、 *** 作步骤 1、进入SPSS,打开相关数据文件,因为本例中是以频数格式录入数据的(相同取值的观测只录入一次,另加一个频数变量用于记录该数值共出现了多少次),所以进入SPSS后,首先要对数据进行预处理,以频数变量进行加权,从而将数据指定为该种格式。选择“数据”|“个案加权”命令。首先在“个案加权”对话框的右侧选中“个案加权系数”单选按钮,然后在左侧的列表框中选择“频数”进入“频率变量”列表框。单击“确定”按钮,完成数据预处理。
2、选择“分析”|“降维”|“对应分析”命令。先定义行变量及其取值范围,即在“对应分析”对话框的左侧选择“眼睛颜色”进入右侧的“行”列表框,然后单击下方的“定义范围”按钮,在“最小值”中输入“1”,“最大值”输入“4”,单击“更新”按钮,最后单击“继续”按钮返回“对应分析”对话框。利用同样的方法定义列变量及其取值范围。列变量选择“头发颜色”,设置“最小值”为“1”,“最大值”为“5”。
3、其余设置采用系统默认值即可。单击“确定”按钮,等待输出结果。
[if !supportLineBreakNewLine]

[endif]

四、结果分析

1、对应分析表下表是按照原始数据整理而成的行列表,反映的是眼睛颜色和头发颜色不同组合下的实际样本数。
2、对应分析摘要在下表中,第一列是维度,其个数等于变量的最小分类数减1,本例中的最小分类数是眼睛颜色的种类(为4类),所以维度是3;第2~5列分别表示奇异值、惯量、卡方值和显著性;随后的列给出了各个维度所能解释的两个变量关系的百分比,容易发现,前两个维度就累计解释了996%的信息。

3

、对应分析坐标值及贡献值下表给出了行变量(眼睛颜色)和列变量(头发颜色)在各个维度上的坐标值,以及各个类别对各维数的贡献值。以本表上部分概述行点为例,对表中各列含义做一下简要说明。 “ 数量”列表示各种类别的构成比 ,如深色眼睛的人占总数的构成比例是0244。 “维得分”列表示各类别在相关维数上的评分 ,首先给出的是默认提取的两个维数上各类别的因子负荷值。 “惯量”列给出了总惯量(023)在行变量中的分解情况,数值越大表示该类别对惯量的贡献越大。“点对维的惯量”表示在各个维数上,信息量在各类别间的分解状况 ,本例中第一维数主要被深色、蓝色、浅色所携带,也就是说这3个类别在第一维数上的区分比较好,第二维数主要被深色、棕色、蓝色所携带,说明这3个类别在第二维数上的区分比较好。 “维对点的惯量”表示各类别的信息在各维数上的分布比例 ,本例中深色、蓝色、浅色都主要分布在第一维数上,棕色主要分在第二维数上。 “总计”表示各维数的信息比例之和 ,可见红色这一类别在前两位中只提出了803%的信息,效果最差。
4、对应分析图下表是对应分析图,是对应分析中最主要的结果,从图中可以看出两个变量不同类别之间的关系。我们可以从两个方面来阅读本图:一方面可以分别从横坐标和纵坐标方向考察变量不同类别之间的稀疏,如果靠得近,则说明在该维数上这些类别之间差别不大;另一方面可以把平面划分为以(0,0)为原点的4个象限,位于相同象限的不同变量的分类点之间的关联较强。容易发现本例中:棕色头发和棕色眼睛,深色头发、黑色头发和深色眼睛,金色头发和蓝色眼睛、浅色眼睛存在着比较强的联系。
分析结论: 通过分析,我们可以知道:由结果分析1可知,眼睛颜色和头发颜色在不同组合下的实际样本数。由结果分析2可知,提取的前两个维数累计就已解释了996%的信息。由结果分析3可知,眼睛颜色和头发颜色在各个维数上的坐标值,以及各个类别对各个维数的贡献值。由结果分析4可知,棕色头发和棕色眼睛,深色头发、黑色头发和深色眼睛,金色头发和蓝色眼睛、浅色眼睛存在着比较强的联系。

(获取更多知识,前往 gz 号程式解说)

原文来自 >当然我不是说需求分析不重要,而是说需求分析太重要,是一个报告所不能容纳的,而是要有一个包括数个不同内容体系的文档系统。而如果你的项目根本就没有那么多的资金和资源,你一般就不要动用这样一个庞大的系统。你在这个时候只需要随时记录你的想法,列出你的关注点和解决的想法。而当然这个系统虽然庞大,但是还有很多线索要你去掌握它们的建造。首先这个系统需要有一个业务目标分析,也就你的这个系统要达到的业务目标,要结合具体的企业环境进行系统分析和论证,这个文档的阅读者基本上属于最高级次的决策者。还要有一个技术目标分析,也就是你的这个项目将解决什么具体的技术问题,这个部分也十分的复杂,基本上需要行业专家认真地分析,这个文档的阅读者属于管理者。还要有一个技术实现的报告,也就是你需要为完成这个项目动用什么技术,主要是你必须说出在这个项目的几种可使用技术方案中你为什么要选择你目前的这种,这个文档的阅读者基本上就是相关的技术人员。而同时你还需要一个风险分析的报告,把这个文档要针对业务/技术/实现这三个层次的问题中要遇到的各种风险进行分析。这属于基本的需求分析的基础文档系统。

2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。

截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。

目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10573841.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存