2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。
截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。
目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。
政策推动我国物联网高速发展
自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。
以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。
我国物联网行业呈高速增长状态 未来将有更广阔的空间
自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。
虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。
物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。
物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。
未来物联网行业将向着多元方向发展
标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。
合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。
因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。
安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。
多重技术推动物联网技术创新
从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;
区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。
—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》
工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。物联网架构可分为三层:感知层、网络层和应用层。感知层由各种传感器构成,包括温湿度传感器、二维码标签、RFID标签和读写器、摄像头、红外线、GPS等感知终端。感知层是物联网识别物体、采集信息的来源。网络层由各种网络,包括互联网、广电网、网络管理系统和云计算平台等组成,是整个物联网的中枢,负责传递和处理感知层获取的信息。应用层是物联网和用户的接口,它与行业需求结合,实现物联网的智能应用。其核心技术又可以细分为六层,如右图:和传统的互联网相比,物联网有其鲜明的特征。首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。还有,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。此外,物联网的精神实质是提供不拘泥于任何场合,任何时间的应用场景与用户的自由互动,它依托云服务平台和互通互联的嵌入式处理软件,弱化技术色彩,强化与用户之间的良性互动,更佳的用户体验,更及时的数据采集和分析建议,更自如的工作和生活,是通往智能生活的物理支撑。这里的“物”要满足以下条件才能够被纳入“物联网”的范围:1、要有数据传输通路;2、要有一定的存储功能;3、要有CPU;4、要有 *** 作系统;5、要有专门的应用程序;6、遵循物联网的通信协议;7、在世界网络中有可被识别的唯一编号。物联网概念这几年可谓是炙手可热,物联网家电也是风生水起,从狭义上讲,物联网家电是指应用了物联网技术的家电产品。从广义上讲,是指能够与互联网联接,通过互联网对其进行控制、管理的家电产品,并且家电产品本身与电网、使用者、处置的物品等能够实现物物相联,通过智慧的方式,达成人们追求的低碳、健康、舒适、便捷的生活方式。物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“InternetofThings”。在这个网络中,物品(商品)能够彼此进行“交流”,而无需人的干预。其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。而RFID,正是能够让物品“开口说话”的一种技术。在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品(商品)的识别,进而通过开放性的计算机网络实现信息交换和共享,实现对物品的“透明”管理。物联网的含义从两化融合这个角度分析物联网的涵义:其一:工业化的基础是自动化,自动化领域发展了近百年,理论、实践都已经非常完善了。特别是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂营运而生的DCS控制系统,更是计算机技术,系统控制技术、网络通讯技术和多媒体技术结合的产物。DCS的理念是分散控制,集中管理。虽然自动设备全部联网,并能在控制中心监控信息而通过 *** 作员来集中管理。但 *** 作员的水平决定了整个系统的优化程度。有经验的 *** 作员可以使生产最优,而缺乏经验的 *** 作员只是保证了生产的安全性。是否有法做到分散控制,集中优化管理?需要通过物联网根据所有监控信息,通过分析与优化技术,找到最优的控制方法,是物联网可以带给DCS控制系统的。其二:IT信息发展的前期其信息服务对象主要是人,其主要解决的问题是解决信息孤岛问题。当为人服务的信息孤岛问题解决后,是要在更大范围解决信息孤岛问题。就是要将物与人的信息打通。人获取了信息之后,可以根据信息判断,做出决策,从而触发下一步 *** 作;但由于人存在个体差异,对于同样的信息,不同的人做出的决策是不同的,如何从信息中获得最优的决策?另外物获得了信息是不能做出决策的,如何让物在获得了信息之后具有决策能力?智能分析与优化技术是解决这个问题的一个手段,在获得信息后,依据历史经验以及理论模型,快速做出最优决策。数据的分析与优化技术在两化融合的工业化与信息化方面都有旺盛的需求。物联网智库认为物联网的定义源于IBM的智慧地球方案,十二五规划中九大试点行业全部都是行业的智能化。无论智慧方案,还是智能行业,智能的根本离不开数据分析与优化技术。数据的分析与优化是物联网的关键技术之一,也是未来物联网发挥价值的关键点。物联网就是各行各业的智能化。私有物联网:一般面向单一机构内部提供服务;公有物联网:基于互联网向公众或大型用户群体提供服务;社区物联网:向一个关联的“社区”或机构群体(如一个城市政府下属的各委局:如公安局、交通局、环保局、城管局等)提供服务;混合物联网:是上述的两种或以上的物联网的组合,但后台有统一运维实体;医学物联网:是将物联网技术应用于医疗、健康管理、老年健康照护等领域;建筑物联网:是将物联网技术应用于路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控等领域。第一,为用户提供无界的产品与服务。这里“无界”的含义是指产品与服务非常丰富,且可以根据用户衍生的新需 求不断拓展。这种丰富性可以通过生态中的品类 / 行业的数量来进行衡量。第二,为用户提供个性化且持续迭代的整体价值体验。 除了提供无界的产品 / 服务,成为物联网生态品牌还意味着品牌要能为用户提供三种重要的价值利益点:无缝整体、定制化 / 客制化及持续迭代。第三,使用户成为品牌的终身用户。从用户视角看,想要被称为生态品牌,还要让用户乐意成为品牌的终身用户。在这里,“终身用户”是指始终对生态保持高粘性的用户,即拥有高体验度、 高共创度、高推荐度和高关联购买的用户。终身用户不再只是消费者,而是同时成为品牌的产消者、首席体验官和首席推荐官。——摘自凯度、牛津大学、海尔共同发布《物联网生态品牌白皮书》
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)