文| AI 财经 社 饶翔宇
编辑| 张硕
进入2019年,多家自动驾驶初创公司先后宣布获得融资。值得注意的是,致力于物流行业自动驾驶技术的企业正在获得资本越来越多的认可。
2019年3月1日,专注于无人驾驶货运的飞步 科技 获得来自青松基金、和玉资本的数千万美元 Pre-A 轮投资。
2月13日,专注于研发无人驾驶卡车的创业公司图森未来宣布完成新浪资本领投的9500万美元D轮融资,此轮融资后图森未来的估值超过10亿美元。
2月12日,硅谷自动驾驶公司Nuro宣布完成来自软银愿景基金的 94 亿美元融资。Nuro的首款产品主要用于本地货物配送的自动驾驶服务。
2月8日,自动驾驶初创公司Aurora宣布获得来自亚马逊、红杉资本和壳牌投资部门的超过53亿美元投资。亚马逊的入局被视为Aurora接下来将在自动驾驶物流方面进行发力。
刚刚过去的2018年,多家物流行业的无人驾驶创业公司也在融资方面取得新进展。比如2018年4月,普洛斯和物联网 科技 公司G7、蔚来资本出资组建了无人驾驶新技术公司嬴彻 科技 ,同年10月,为物流行业提供解决方案的G7完成32亿美元融资;2018年11月15日,智加 科技 宣布完成A+轮融资,随后与一汽解放、满帮集团联合宣布,将用3-5年让无人重卡进入干线物流。
如此高密度、高额度的资金进场,正预示着经过了此前乘用车自动驾驶创业公司的融资热后,无人驾驶的风正在物流领域吹起。事实上,相比于乘用车的落地场景,物流行业全封闭或半封闭的行车环境、两点间程式化的用车需求显然更有利于无人驾驶技术的落地。
不过,技术落地是一方面,技术商业化则是另一方面,底层计算平台的成熟度、车规级激光雷达的成本、特定场景算法都将成为后者能否实现的关键。从目前来看, 无人驾驶的落地与商业化就像是一场马拉松,物流领域的玩家已经跑在了相对靠前的位置。
无人驾驶的风向变化
2016年底至2017年初,一批包括禾多 科技 、驭势 科技 、文远知行、Roadstarai、Momenta等在内,专注于乘用车领域的无人驾驶创业公司相继成立。在一到两年时间内,这些公司都纷纷宣布获得多轮融资,最高单笔融资额更是达到上亿美元。
虽然入场较早、融资频频,但是受制于自动驾驶乘用车的应用场景过于复杂,上述创业公司在系统的稳定性和行车的安全性上,还有很多技术性的问题需要解决,比如激光雷达的成本控制和精准度的提高、底层计算平台的成熟度都远非短时间能够解决的。
除此之外,文远知行和Roadstarai两家公司还相继发生了高管内斗、联合创始人因收受回扣遭“解职”的事件,由此暴露出了技术出身的创始团队在公司管理上能力不足的问题,频繁的人事纠纷也进一步阻碍了上述公司的技术落地和商业化进程。
实现乘用车的自动驾驶还有很长的路,但是在物流行业,自动驾驶已经有了商业化试运营案例。
获得软银94亿美元融资后,Nuro创始人朱家俊称,未来,Nuro还将和多家合作伙伴一起推出无人配送服务,包括餐厅、药房、生鲜超市、服装百货、干洗等。
今年2月,零售巨头亚马逊在一个星期内,拿出超过12亿美元分别投资了无人驾驶创业公司Aurora和电动卡车公司Rivian。不仅如此,亚马逊此前还连续三轮投资了被称为“货运版Uber”的卡车物流平台Convoy。
刚刚获得融资的图森未来也公布了公司在无人驾驶物流卡车研发上的最新进展。据介绍,在美国,图森未来无人驾驶卡车日均完成3-5次货物运输,服务13位终端货主客户。在中国,图森未来在中国北方某港口持续试运营超过300天,并将在上海临港地区开展无人驾驶示范运营。
国内的京东、菜鸟、苏宁等巨头也在不断进场。
比如,2016年京东就成立了专门的“X事业”,专注于“互联网+物流”,希望打造着眼未来的智慧仓储物流系统。目前,京东第四代无人驾驶物流车已经在北京的开放道路上,开启了全场景常态化配送。菜鸟ET物流实验室也在云栖大会现场发布第四代新零售物流无人车。苏宁的“卧龙一号”则是国内首个能与电梯进行信息交互的无人车,可以实现从户外到室内的配送。
“无人驾驶已经不是一个讲demo的时间段了,现在更强调落地。在无人驾驶乘用车落地变得遥遥无期的当下,场景相对简单、市场规模超过万亿的物流行业自然有着更多的机会。”无人驾驶领域的创业者张驰(化名)对AI 财经 社表示,以Nuro为例 ,低速物流车相对更安全,落地也会更快。
根据张驰的说法,物流领域最快落地的应该是低速无人配送车和港口、码头、仓库、矿产等封闭场景的无人驾驶卡车;其次,就是负责干线物流运输的自动驾驶;最后,则是 社会 化道路上行驶、场景最复杂的无人驾驶城配物流车。
“事实上,在全封闭的工厂和仓储园区,已经有了无人驾驶的小规模的商业化应用。”钟鼎资本合伙人汤涛对AI 财经 社表示,此前钟鼎投资过一家专注在场内物流领域做无人叉车和无人牵引车的公司,现在该公司已经开始出货并陆续产生营收了。
汤涛对于物流无人驾驶领域这一波投资浪潮并不意外。在他看来,物流行业目前面临着越来越严重的“用工荒”的问题,越来越多的年轻人不再愿意从事枯燥、繁重的运输工作,所以物流行业对于无人驾驶技术的需求要比乘用车市场来得更加强烈。
此外,今年资本市场整体上开始偏谨慎,大家更喜欢投一些盈利时间表更明确的的公司。在自动驾驶的实现方向上,无人物流车可能会更快商业化——一方面因为技术上更容易实现;另一方面从政策角度上来讲,商用车可能会更快跑出来。
投资未来
2019CES前夕,百度利用旗下的自动驾驶车队,从长沙运送了一个包裹到拉斯维加斯。整个过程中,除了跨洋飞行外,在干线物流、支线物流、终端配送的各个环节均是百度无人驾驶车队在工作。这个全球首次完成的自动驾驶物流闭环,让很多人看到了物流行业技术节点的到来。
“从各种条件来看,距离物流无人车的大规模商业化应用还需要较长的一段时间。”张驰表示,目前整个无人驾驶行业主要的3大环节——底层的计算平台、各个场景的算法以及车规级的激光雷达都还未发展成熟,改装一辆无人车的成本可能超过200万元,成本过于昂贵。受此影响,物流领域无人驾驶技术的爆发还需要继续等待。
事实上,除了无人驾驶整个产业链还尚未成熟,国内外的相关政策法规也还未完全放开。
在美国,针对自动驾驶道路测试的管理规范主要由各州自行立法。截至2017 年底,美国有内华达州、加利福尼亚州、佛罗里达州、密歇根州等共 21 个州通过了地方层面的法案,另有 10 个州发布了行政命令,支持自动驾驶 汽车 道路测试,明确申请测试的资格要求及测试过程中的管理要求。
目前,美国自动驾驶 汽车 发展最具代表性的地区是加州,当地开放的政策使得几乎全球所有的自动驾驶公司都会选择在此进行道路测试。根据加州机动车管理局(DMV)公布的数据显示,截至 2018 年 12 月 7 日,共有62家来自不同领域的企业获准在加州测试自动驾驶 汽车 的许可,其中 Waymo是唯一一家获得无驾驶员在车内的自动驾驶测试资格的企业。
在中国,截至 2018 年 12 月 25 日,北京市、上海市、重庆市、杭州市、江苏省共 15 个省市区公布了地方级的测试管理实施细则,准许企业申请自动驾驶 汽车 道路测试的许可。在牌照发放方面,截至 2018 年 12 月 25 日,国内共有 27 家公司获得了共95 张测试牌照。其中,百度分别从北京、平潭、重庆、长沙、天津五个城市共申请获得了 51 张测试牌照。
同时,国内的无人驾驶路测场景也变得更加多元。
2019年1月21日,公安部交通管理科学研究所宣布建成我国首个专门用于自动驾驶测试的封闭高速公路。该封闭高速公路位于江苏省无锡市通锡高速公路(S19)南通方向,全长41km。1月22日,百度旗下的22辆“阿波罗”自动驾驶数据采集及测设车辆,在山西省五盂高速阳泉段进行了相关测试。
高速公路路测场景的开放,对于做干线物流无人驾驶技术研发的G7、智加 科技 以及图森未来来说,显然是一个有力的政策加持。事实上,在政策逐渐放开的同时,物流无人卡车的场景联动也已开始。
2018年11月8日,智加 科技 宣布与满帮集团达成独家战略合作。据统计,中国干线货车700万辆中有520万辆是满帮会员,中国物流企业150万家中有125万家是满帮会员。满帮庞大的交易数据和交通数据将能很好地加速智加 科技 干线物流的无人驾驶技术落地。
“政策的制定是与技术的成熟度是密切相关的。现在各地政府对无人驾驶都是非常支持的,但是路测到真正的商业化还有一个过程,接下来能拿到商业化牌照的,肯定是技术跑在最前面的。”汤涛表示,政策的管制只是暂时的,未来当物流无人车这个大方向上出现成熟、安全的解决方案后,政策自然就会进一步放开。
按照汤涛的说法,所有入局无人驾驶的投资机构,不管是乘用车还是商用车,都是在投未来。
“其实,短期算账是算不过来的。这个核心逻辑就是你信不信自动驾驶的卡车会在未来的物流行业占到一定比例。这类公司是不会有太多家的,最早开始做的,容易收集到更多的corner case,然后就能把系统修改得更稳定,然后成本也会更低。”汤涛表示,在这种情况下,市场上的头部公司就会把主要的份额都吃掉。
至于怎么去制定估值模型,投资的创业公司怎么去盈利,这就是一个时间表的问题了。
我们身边的共享单车即应用了物联网技术,《物联网时代》将物联网定义为:“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊认为,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
连接带来了时代的需求的变化,当世界上有十亿网民的时候,Facebook就自然的出现了。
如果你仔细地观察过去25年里的科技企业,你就会发现变化一直在发生。
每隔3-7年,企业就必须对它们进行重塑。那些错过了一次技术转型的公司如果能迎头赶上的话,那么还有可能重新恢复过来。而那些错过了两次技术转型的公司,则有可能已经消失了。如果你有兴趣的话,可以查看一下50年前标准普尔500强公司的名单,如果统计无误的话,截止到2017年,只有19%的企业现在依然存在。
当我们在网络上看着90后“佛系”“中年人”的话题捧腹大笑的时候,其实我们没有看到这背后透露着的真正原因是:90后们生活在“变的太快”的世界里,太多学习工作生活里的问题他的上一辈甚至前一代人都没有遇到过,他们的迷茫那么大,以至于有些人认为:至于以不变应万变才是“正解”。
而如果我们把这件事扩展的更大一些,无论我们的真实年龄如何,我们都注定属于将遭遇革命性变革的一代人。这也正是马切伊克兰兹(Maciej Kranz)将每一个商业领域正经历“革命性变革”的这一代人叫做“物联网一代”的原因。
什么是物联网?
一个相对繁琐的解释是:
物联网是互联网的一个延伸。互联网的终端是计算机(PC、服务器),我们运行的所有程序都是计算机和网络中的数据处理和数据传输,没有涉及任何其他的终端。而未来,所有物和物之间都可以实现互联。物联网能够让互联网连接对象使用嵌入式传感器进行数据收集和交换的网络,汽车,厨房电器,甚至心脏监视器都可以通过物联网连接。随着物联网在未来几年的发展,更多的电子设备将加入物联网的阵营。
而在《物联网时代》中,物联网有一个更为简单明了的定义,它是“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊·克兰兹是全球物联网专家,思科公司战略创新集团副总裁。在本书中,他基于思科的工作视野和在全球物联网行业一线的长期实践经验,从数十个他参与实施的物联网案例中,总结出4种已经获得验证的、可以快速回报的场景。顺带提一下,思科公司的主营业务就是物联网。
总的来看,物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。在这个意义上说,物联网是一个很大的概念。如果单从学科上分解来看的话,它涉及到通信,信号处理,计算机视觉,自动化控制,电路系统,信息融合,无线自组织网络,MEMS传感器设计等等。
可以说,这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。实际上,大数据概念最早的提出,也是因为物联网的兴起,传感器接入网络之后,大大增加了可以挖掘的数据量,网络上的数据不但包括社交网络这种来自用户的数据,还有了来自物理世界的数据。
物联网发展速度为什么这么慢?
正如马切伊在他的书中提到的那样,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
它的本质便是上个世纪学术界开始兴起传感器网络、自组织及多跳网络(wireless sensor network, ad-hoc network, wireless multi-hop network)。RFID在智能物流上的应用只是最为基本的应用场景,当前的研究远比这个更为复杂。但是,受限于应用场景和技术实现的瓶颈,物联网的发展,其实无法像互联网那样爆发。
首先,现阶段的物联网应用基本都是“锦上添花”的东西,需求性并没有那么强,如可穿戴设备和智能家居,这也就是为什么很多智能硬件叫好不叫座的根本性原因;也正是因为这个原因,商业上也不会出现滴滴打车那样的持续性投入,这又反向钳制了这一技术的商业化发展。
其次,物联网技术上还有很多没有突破。最大的技术瓶颈可能在MEMS传感器的性能和无线传感网的设计实现上。
再有,就是目前在应用上还找不到突破。目前比较活的也就是智能硬件,无人机,工业物联网这块。但是离人类和互联网形成的应用需求还无法相比,目前还没出现。
最终,物联网应用的制约因素还是能源,物联网应用场景的扩展一直在等待电池技术的突破。所以,目前来说物联网首先会在那些对能量要求不是很高的方向首先取得突破,比如智能硬件和工业设备上。
总之,物联网的方向毋庸置疑有着广阔的发展前景,但是当前基础研究和相关技术还有待发展,因此看起来发展缓慢,甚至就是停滞,学术和商业界都在等待一个颠覆性应用可以让“物联网”来一次诈尸。
共享单车中的物联网技术
完全可以想象,物联网的技术前景是广阔的。
实际上,2016年底兴起的共享单车就是一个成功的物联网商业化作品。
看似简单的单车使用过程,包括了物联网技术,人联网技术(移动互联网),自动控制技术,GPS全球定位技术等多个技术领域。但是整体的技术实现并不复杂,并没有涉及到什么创新黑科技。
首先,一辆单车需要以下几样设备参与运作:
•单车上面的智能锁(这个是核心关键,包括了GPS定位模块,GPRS通讯模块,主控芯片,电控锁模块等)
•用户手中的手机和APP
•单车提供商的云服务器(平台)
关键的环节在于单车和云服务器之间的通讯,采用的是老旧的GPRS技术。为什么要用这种落后的2G技术呢? 不使用LTE呢?答案很简单: 省钱省电覆盖好。
共享单车是典型的物联网应用场景,也能很好的克服我们之前说的物联网现存的耗能的问题。它对网络的要求并不是大数据量(它只需要很少很小的几条消息),而且它不需要速度很快(几秒钟的时延,完全可以忍受),它需要很低的功耗和很长的待机时间。
早期阶段,共享单车甚至依靠短信和云服务器进行通信,所以等待解锁的时间比较久,大约需要6-10秒。
还有一个小细节,不知道有没有人遇到过。我曾经用过一次支付宝旗下集成的一款市面上不太流行的单车品牌,扫码之后,手机提示我:锁没电了。这是我第一次意识到,原来单车的锁需要电!?
当然,正因为共享单车智能锁有这么多模块,所以它当然要耗电的。
为什么早期的单车骑起来特别累?除了一些材料和工学设计的原因,也是因为:你在充当人肉发电机。后来,为了改善用户体验,开始流行太阳能充电了。所以,越来越多的单车装上了太阳能发电板(如下图)。
经过过去一年半的迭代和升级,现在市面上所有的单车使用体验相比最早的那一批已经有了质的飞跃。
同时,近些年上市的一些空气净化器,穿戴设备以及家庭环境监控设备也已经完成了一代代的自我迭代和进化,在目前的消费场景下,服务着千家万户,这正是物联网技术未来商业化发展的一个缩影。
如何顺势借力风口,成为一名成功的物联网创业者或者职场精英?
BI Intelligence 预计:到 2020 年,地球上将有超过 240 亿的物联网设备,约为人均 4 台,当我们接近这个阶段时,60 亿美元将流入物联网解决方案,包括应用程序开发,设备硬件,系统集成,数据存储等。然而这些投资在 2025 年将产生 13 万亿美元的效益。
然而正如前面所说的,基于一些目前无法攻关的技术难题,它的商业前景也是复杂的,特别是对于创业者而言,这不是一个好消息。创业者大部分都是小公司,无论多么先进的技术,一旦市场成熟,目前的互联网大鳄公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。
而且,目前全世界范围内,也已经有多家物联网平台已经初具规模,比如Amazon Web 服务、Microsoft Azure、ThingWorx 物联网平台、IBM 的沃森、思科物联网云连接、Salesforce IoT 云、Oracle 集成云以及 GE Predix。
因此,物联网行业的创业者应该处理好两个问题。
首先,科技行业想突破垄断,对于微软和IBM这样的大企业而言,是技术积累。对于我们这样的个人或小团队而言,最好的方法是缩小目标客户群体,专注于某一个具体的领域或者攻关一项技术去解决某一个具体的问题。主动缩小目标客群的好处就是大企业不容易来抢市场,而你我们相对容易找到目标客户,最终说服他们买你的产品。
其次,以热门概念 *** 作以达到融资目的,而从不关心成本和收入是最错误的做法。
总结来看,就是组建一个相对小型的团队来维护一款小产品或者一个项目,这样可能反而容易成功,比如团队或项目被大公司收购。
如果你只是想成为一个工作体面收入又高的技术工作者和相关从业者,有一条相对明确的职业发展方向可以借鉴:学Java,去一家当地比较有名的计算机类企业应聘;取得一定成绩后,跳槽至国内一线物联网公司;3-5年后,有机会跳槽去国际一线企业在华公司应聘,如前面所说的这几个大型的物联网平台。如果在继续在里面服务几年,等到物联网技术真正实现商业化爆炸的那一天,你绝对已经可以斩钉截铁向别人介绍说:你好,我是物联网行业的资深行业顾问!就像我们前文提到的《物联网时代》作者马切伊先生一样。
就算不完全复制这条路,普通人想要搭上物联网这班车也不是没有可能的。毕竟,物联网的范围其实极其广泛。无论是大数据分析师、GPS定位还是井下探测,都可以算是物联网的一部分。只不过,程序猿是物联网现阶段发展时期,需求最大平均工资最高的工种而已。
以上由物联传媒提供,如有侵权联系删除
作为一位物联网小白,是时候分享自己对物联网这个庞然大物一些简单的解析了。众所周知,物联网的范围很广很广。在人们都意识生活离不开互联网的时候,你会发现,其实物联网也无处不在。但是物联网又没有像互联网一样应用的很明显,能够通过音视频表现出来。物联网从2016、2017年的LoRa、NB-Iot等技术站在风口上,到2018年渐渐进入一个平稳期,很多人不确定其方向到底在哪里。
近两年一直从事物联网相关的硬件产品开发,对物联网相关知识有了浅陋的了解,对物联网方向也简单认识。简答发表个人见解。
智能家居
提到智能家居,现在我们首先想到的就是AI音箱,它是智能家居的入口,它融合了AI、物联网、大数据等技术一体,实现了人与物、物与物的相连。此类产品有亚马逊的Echo、小米的小爱、京东的叮咚、阿里的天猫精灵等。已经深入到人们的生活中。与我们的智能家居(家用电器等)相接、控制,提供人们的生活质(bi)量(ge)。未来,智能家居行业将会围绕着AI音箱等作更广的发展。如扩展到智能穿戴设备、智能医疗等方面。
畜牧业、农业物联网应用
我国是一个农业大国,也是一个畜牧业大国。物联网在农业中的应用包括植物生长环境的数据采集、农业物流跟踪、食品安全跟踪、农作物生长控制等。目前的市场来看,物联网在农业方面的应用主要还是应用于农场、果蔬基地等,其他,如物流市场、食品安全市场等都还没有很好的应用。这个和现有技术、成本以及需求等相关
畜牧业主要包括牛、羊、猪、鸡鸭鹅等。物联网在畜牧业中应用案例比较多。例如,网易猪、京东的跑步鸡、牛耳标、羊耳标等。物联网在畜牧业中应用主要是动物数据采集(健康、生长周期等)、实时定位、动物溯源(食品安全)等。现在虽有大量案例,但是技术的成熟型以及产品的必要性一直制约其发展。(只针对畜牧业本身,不涉及对应的物联网+畜牧业+金融贷款的组合产品,因为涉及到畜牧业+金融,现在就可以考虑加入区块链)
工业物联网
工业物联网的市场与应用是我目前认为市场行情最好的,也是目前物联网效果最能体现的应用场景。工厂设备改造、无线监控、设备状态检测、工业园区人员监控等需求非常多。工业物联网的应用主要是现代企业需要提高效率、降低人力成本以及维护成本,而现在的物联网解决方案恰好帮助他们解决了。其次,工业应用不像商用对产品性能以及外观等最求很高,其对使用时间,寿命稳定性等要求比较高。这些恰恰是符合物联网终端设备的要求。还有就是现在的窄带物联网技术满足长距离传输需求,符合工业场所的需求。需求和技术都能满足,所以工业物联网的前景非常明朗。
智慧城市
智慧城市这个概念比较大,智慧城市的目的是方便人们生活,智慧城市的每个部分都离不开物联网,包括安防监控、环保、停车等。智慧城市的发展在一定程度上会方便人们的生活,提高生活质量。但是,从现在已经部署的智慧城市的效果来看,并不明显。个人认为其主要原因是人们对物联网的概念还不深入,一直停留在过去的生活方式中,并且生活中的一些微小的变化并不会立刻显示出来,不会像移动互联网那样表现的特别明显。我们现在要做的就是适应时代的变化,让科技进入生活,改变生活。
物联网的应用远不止这么点,它无处不在,让科技进入我们的生活,让物联网提高我们的生活质量,这个是我们作为物联网产品人的职责。让产品进入生活,改变生活,改变物与物,万物互联。
文/杨剑勇
以NB-IoT和LoRa为核心的低功耗广域网无线连接规模日益扩大,且5G也开启冲刺阶段,大连接将掀起新一轮信息 科技 变革,一个万物互联的时代伴随通信技术发展即将到来,只是,万物互联最终透过云端实现跨行业和跨设备互联互通,各种设备所收集到的数据经过“云”上处理,并利用这些数据将会催生众多新商业模式。
万物互联在于通信技术发展,而万物智能在于数据处理,使得各种设备具有感知能力,云端作为数据集散中心,并利用AI技术,使得万物智能得以实现。
物联网核心在于数据的收集和处理,数以万亿计的传感器被嵌入到各个角落,所收集数据经AI技术进行智能分析,正是这个小小传感器,则驱动着 社会 数字化变革,企业有能力获取无限数据,并从中洞察实现快速创新,驱动产业转型升级,基于海量数据,地区甚至可以洞悉未来商业经济。
各种智能设备和传感器联网后,所产生数据并将厘清,挖掘其价值,从而激发物联网潜力。而云服务商则打通了云、端、边,并通过AI能力助力物联网应用落地,至此,各巨头积极布局,不仅有亚马逊、微软和谷歌等国际巨头,包括BAT今年纷纷调整战略,提升云服务战略,向物联网延伸,以此抢夺这条全新赛道。
在此之前,物联网并没有得到大规模部署,物联网高级顾问杨剑勇支持,受制于传感器的部署,跨品牌、跨平台和跨设备之间互通限制,以及物联网设备碎片化等诸多因素,但一线 科技 巨头进入,并伴随传感器部署规模日益扩大,以及无线通信技术迅猛发展,经过云端把人、机器和数据连接起来,且能为物联网所产生的海量数据提供强大的计算处理的平台,是物联网发展关键所在。
至此,巨头的云服务面向各行业物联网云平台应运而生,继而激活数据价值,以丰富的应用来抢夺主导权,对于他们来说,丰富的物联网应用是争夺市场核心,在其平台比拼的是应用能力,覆盖工业、交通、教育和金融等丰富的应用,这将是争夺物联网这一张船票的核心。
物联网不断推进和部署规模日益扩大,数以百亿设备接入网络,其经济价值超10万亿美元,各种设备利用传感器收集数据,一部分在边缘侧处理,并结合云端大脑,使得设备具有感知能力,仅在工业互联网领域就能激发高达7000亿市场规模。制造业在部署各种传感器后,与云平台结合,并利用人工智能技术对数据分析,赋予工业企业依据数据具有洞察力,把制造业推向数字制造转型。
(一)微软
GE在微软Azure云平台上标准化其Predix解决方案,将Predix产品组合与Azure的本地云功能,包括Azure物联网和Azure数据与分析,进行深度整合。在农业应用方向,布勒集团作为一家食品加工系统企业,将人工智能、智能云以及物联网技术相结合,提高玉米产量,同时最大限度地减少谷物地毒害污染。
微软以云、边缘智能和人工智能构件生态,并已经广泛应用智能硬件和工业制造等各行各业,Azure IoT等服务帮助制造商实施工业40,包括ABB和西门子等工业巨擘都在利用微软Azure开发自己的物联网平台。
(二)腾讯
腾讯云和三一重工打造的工业数据根云平台,三一重工连接了全区超过30万台重型机械设备,能够实时采集近1万个运行参数,共积累1000多亿条工程机械工业大数据,实现了全球范围内工程设备2小时到场,24小时内完工的服务承诺,大大提升了运营的效率,堪称工业智慧生态中的典范。
腾讯云在华星光电应用场景中,通过物联网平台采集数据,利用腾讯优图AI图像检测技术,系统可以724小时不间断进行质检工作,准确率达到了90%以上,远远超过人的水平,整个生产周期缩短了近40%。
产业互联网最初的营收机会还是来自云业务,腾讯的云服务增长非常快,市场份额一直不断提高,并强调,云业务的本质决定了需要大量的投入,包括数据中心和服务器方面的支出,这样才有来自云服务的经常性收入。这是腾讯总裁刘炽平在此前第三季度季报后高管电话电话会议上的讲话。
特别今年新成立云与智慧产业事业群后,腾讯积极拥抱产业互联网,通过整合自身技术和生态资源,腾讯云正构筑全链路的开发者服务体系,帮助人工智能、物联网、小程序、云原生领域开发者快速成长,并促进各行业与互联网深度融合,助推产业互联网升级。
(三)百度
百度以ABC+IoT+智能边缘促进物联网在各垂直领域展开大规模应用,百度云质检云解决方案帮助宝钢建立从连接采集、存储计算到理解决策的感知认知平台,并展示了钢包内衬熔损识别的应用。还有宝钢技术和百度共同打造“智能钢包”应用,通过为钢包部署传感器,实时监控钢包状态,并结合ABC能力打造智能调度的钢包管理系统,降低50%钢包烘烤能耗,平均降低出钢温度10℃,可以节约能源成本70亿元,大约可以节约150亿元。
百度在物联网应用中能大放异彩,得益于2010年开始积极 探索 发展AI技术,应用开始在多个领域开花结果,并以百度云为平台把AI能力分享给 社会 ,从农业到工业,从家庭到 汽车 ,以及翻译、图像识别和信息流等产品和服务,百度AI商业落地走在行业前列。在百度看来,人工智能将推动全 社会 新一轮产业变革,“云”巅之上的企业正向着智能化、AI化升级。
(四)阿里
阿里云在制造业也有不少案例,通过云+AI+IoT能力先后为协鑫集成、天合光能和徐工集团等大型制造企业提供服务。基于阿里云可以轻松安全地将设备连接至云,从边缘设备到云端,从各种设备上收集数据、分析数据,帮助制造业提高运营效率,如协鑫光伏切片生产车间,生产良品率已经提升1个百分点,每年可节省上亿元的生产成本。
全球工业40和智能制造如火如荼进行中,这制造业升级大趋势下,越来越多的制造商开始评估并加大部署物联网,不仅西门子和通用电气等工业巨擘,包括 科技 企业也积极涌入,出击这个新风口,纷纷推出打通数据的工业互联网云平台,透过云端连接设备、服务和数据,并经AI技术处理,可以实时监测工厂运转状态,自主检测生产线上机械异常,以数字化来提升工厂生产率和产品合格率,推动制造业向数字化转型。
作者系物联网高级顾问杨剑勇,网易最佳签约作者,致力于深度解读IoT和AI等前沿 科技 ,基于对未来物联网洞察和对趋势判断,其观点被众多权威媒体和知名企业引用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)