2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。
截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。
目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。
政策推动我国物联网高速发展
自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。
以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。
我国物联网行业呈高速增长状态 未来将有更广阔的空间
自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。
虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。
物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。
物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。
未来物联网行业将向着多元方向发展
标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。
合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。
因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。
安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。
多重技术推动物联网技术创新
从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;
区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。
—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》
1.物联网的政策和法规。2.技术标准的统一与协调。
3.管理平台的形成。
物联网的价值在什么地方?在于网,而不在于物。传感是容易的,但是感知的信息,如果没有一个庞大的网络体系,不能进行管理和整合,那这个网络就没有意义。
4.安全体系的建立与形成。
物联网目前的传感技术主要是RFID,植入这个芯片的产品,是有可能被任何人进行感知的,它对于产品的主人而言,有这样的一个体系,可以方便的进行管理。
5.应用的开发。
物联网的价值不是一个可传感的网络,而是必须各个行业参与进来进行应用,不同行业,会有不同的应用,也会有各自不同的要求,这些必须根据行业的特点,进行深入的研究和有价值的开发。
6 商业模式。
物联网商用模式有待完善,要发展成熟的商业模式,必须打破行业壁垒、充分完善政策环境,并进行共赢模式的探索,要改变改造成本高的现状。
在我们的日常生活中随处都有计算机视觉技术,从手机游戏机可以识别您的手势,可以自动将焦点放在人身上等。计算机视觉正在影响我们生活的许多领域。
事实上,计算机视觉在商业和国防中使用方面有悠久的历史。可以在各种光谱范围内感测光波的光学传感器被部署在许多应用中:如制造中的质量检测,环境管理的遥感或在战场上收集智能的高分辨率相机。这些传感器中的一些是静止的,而其它传感器连接到诸如卫星,无人机和车辆是在移动物体上。
在过去,许多计算机视觉应用程序仅限于某些封闭平台。当与IP连接技术相结合时,他们创建了一组新的应用程序计算机视觉,加上IP连接,高级数据分析和人工智能,将成为彼此的催化剂,从而在物联网(IoT)创新和应用方面带来革命性的飞跃。
推动计算机视觉的多领域的进步
视觉环境设计
视觉或视力是五种人类感觉中最发达的。我们每天都用它来识别我们的朋友,在我们的路上发现障碍,完成任务和学习新事物。我们通过我们的视觉来识别我们周围的环境。有路牌和信号灯帮助我们从一个地方到另一个地方。通过识别环境标识找到我们所要到达的地方。鉴于视觉的重要性,将其扩展到计算机和自动化系统,实现了视觉应用大飞跃。
什么是计算机视觉
计算机视觉从捕获和存储图像或一组图像的技术开始,然后将这些图像转换成可以进一步执行的信息。它由多种技术组合(图1)组成。计算机视觉工程是一个跨学科领域,需要在许多这些技术中跨职能和系统专长。
例如,Microsoft Kinect使用3D计算机图形算法来实现计算机视觉来分析和理解三维场景。它允许游戏开发人员将实时全身运动捕捉与人造3D环境进行合并。除了游戏,这在机器人,虚拟现实(VR)和增强现实(AR)应用等领域开辟了新的可能性。
传感器技术的进步也在传统摄像机传感器以外的许多层面迅速发展。 最近的一些例子包括:
•红外传感器和激光器结合起来感测深度和距离,这是自驾车和3D地图应用的关键推动因素之一
•非侵入式传感器,可跟踪医疗患者的生命体征,无需身体接触
•高频摄像机可以捕捉人眼不能察觉的微妙动作,以帮助运动员分析其步态
•超低功耗和低成本的视觉传感器,可长期部署在任何地方
图1由多个领域的进步驱动的计算机视觉
计算机视觉获得智能
早期应用
监控行业是图像处理技术和视频分析的早期采用者之一。视频分析是计算机视觉的一个特殊用例,重点是从小时的视频中找到模式。在现实情况下自动检测和识别预定义模式的能力代表了数百种用例的巨大市场机会。
第一个视频分析工具使用手工算法来识别图像和视频中的特定功能。它们在实验室设置和模拟环境中都是准确的。然而,当输入数据(如照明条件和摄像机视图)偏离设计假设时,性能迅速下降。
研究人员和工程师花费了多年的开发和调优算法,或者用新的方法来处理不同的条件。然而,使用这些算法的相机或录像机仍然不够稳健。尽管多年来取得了一些进步,但现实世界的糟糕表现限制了技术的有用性和应用。
深入学习突破
近年来,深度学习算法的出现激发了计算机视觉。深入学习使用人造神经网络(ANN)算法,模拟人脑神经元。
从2010年初开始,由图形处理单元(GPU)加速的计算机性能已经越来越强大,足以使研究人员实现复杂ANN的功能。此外,部分由视频站点和普遍的IoT设备驱动,研究人员拥有大量不同的视频和图像数据库来训练其神经网络。
在2012年,称为卷积神经网络(CNN)的深层神经网络(DNN)的版本显示了精确度的巨大飞跃。这一发展推动了计算机视觉工程领域的兴趣和兴奋。现在,在需要图像分类和面部识别的应用中,深度学习算法甚至超过了人类对应物。更重要的是,就像人类一样,这些算法具有学习和适应不同条件的能力。
场景的语义表示
图2场景的语义表示
深入学习,我们正在进入一个认知技术的时代,电脑视觉和深度学习融合在一起,解决人脑大脑层面的高层次,复杂问题(图2)。我们正在抓住可能的表面。这些系统将继续改进,使用更快的处理器,更先进的机器学习算法和更深入的集成到边缘设备。计算机视野将改变物联网。
计算机视觉应用案例:
•监测作物健康的农业无人机(图3)
•交通基础设施管理
•无人机无人机检查
•下一代家庭安全摄像机
图3无人机收集图像的植被指数
这些只是计算机视觉如何大大提高许多领域的生产力的一些小例子。我们正在进入物联网进化的下一个阶段。在第一阶段,我们专注于连接设备,聚合数据和建立大型数据平台。在第二阶段,重点将转移到通过计算机视觉和深度学习等技术使“事物”更加智能,从而产生更多可 *** 作的数据。
挑战
使技术更加实用,经济的问题需要克服许多问题:
嵌入式平台需要集成深层神经设计。围绕电力消耗,成本,准确性和灵活性制定困难的设计决策。
行业需要标准化,以允许智能设备和系统相互通信并共享元数据。
系统不再是被动的数据收集器。他们需要以最少的人为干预对数据采取行动。他们需要自己学习和即兴。整个软件/固件更新过程在机器学习时代具有新的意义。
黑客可能会利用计算机视觉和AI中的新安全漏洞。设计人员需要考虑到这一点。
以上由物联传媒转载,如有侵权联系删除
当前,以大数据、人工智能为代表的新一轮科技革命正在孕育兴起,并以前所未有的速度和方式影响和改变着世界。社会正在迈向一个万物互联、万象更新的智能时代。与之相伴相生的是,万物互联正悄然进入人们的生活,越来越多的个体将被接入万物互联的体系,未来甚至垃圾箱也可能会联网。
借由一个物联网设备,黑客攻击行为通过蝴蝶效应扩展到物联网更多节点,影响范围将被迅速放大。物联网环境下,个体间的联系越紧密,那么任何一个针对个体的网络攻击都有可能蔓延到更广的范围,攻击带来的损害程度也将远比对单独个人电脑端、移动端的攻击大得多,物联网时代的网络安全维护正在成为一盘需要统筹全局的“大棋”。
相关数据也佐证了这一点。国家互联网应急中心发布的《2017年我国互联网网络安全态势综述》显示,物联网正在加速融入人们的生产生活,传统的网络攻击和风险正在向物联网和智能设备蔓延。
数据显示,2017年国家信息安全漏洞共享平台收录的安全漏洞中,联网智能设备安全漏洞多达2440个,同比增长1184%,每日活跃的受控物联网设备IP地址达27万个,涉及的设备类型主要有家用路由器、网络摄像头、会议系统等。来源:央广
数字化转型已成为众多企业十四五战略布局的新规划,随着云计算、大数据、人工智能和5G 等技术的共同作用下,企业数字化转型的速度得到前所未有的跨越式发展,在边际成本上也获得了压倒性的先发竞争优势,将对每个行业产生巨大的影响,数字化将成为数字经济进程中企业追逐的新目标。数字化转型是企业追逐的新目标也是必经之路,甚至可以说“无数字化就会面临淘汰”。传统的信息化方式已经很难帮助企业应对极端条件下的企业发展,如这两年的疫情,给国家和企业造成的损失无可计量,对传统企业更是致命打击,也正是诸如此类的突发事件,类似加速一样,带来了数字化的指数发展,加快了行业的数字化普及。
物联网是“新基建”的核心要素,也是数字化转型的关键节点。传统制造企业已不再是埋头造东西了,而是通过收集产品的各项使用指标、用户习惯等数据,优化产品,提升用户满意度。每个产品都可以通过不同的网络介质与云端通信,实现数据的高效、稳定传输。
所以说要实现数字化转型,物联网是必经之路。
物联网 归根结底还是一种以网络为介质将万物进行互联网的网络。只不过,这网络不再局限于以前的局域网,而是通过各种新的通信技术,如5G 。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递到云端 。
物联网初步分为三个层次,有物理层(也被称为感知层),网络层和应用层。
也称为感知层,主要是由各种的传感器元器件构成,如温、湿度传感器、高度传感器、方向传感器、R FID 标签和读写器等等。它本身是对外界各种信号的感知,类似人的五感,采集各种信息的来源,主要功能就是识别物体,采集信息。
负责传递和处理感知层获取的信息,由各种网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成。
负责物联网和用户(包括人、组织和其他系统)的人机接口,与各行各业的业务需要进行对接,实现物联网的智能应用。
物联网技术已经不再局限于某个企业或者行业,随着快速的发展,物联网已涉及到智慧安防、智慧能源、智慧家居、智慧城市等的建设。所以必须快速的形成自主的知识产权,掌握物联网的核心技术。
从企业层面而言,通过应用物联网可以最直观、最优先的获得终端用户使用产品的第一手数据, 有助于 企业高层在企业战略、营销、研发、运营等多板块的决策。
随着技术的不断更新发展 ,企业 最终 将会成为物联网解决方案的执行者, 深知物联网可以为企业带来的无限红利,如为企业在行业内的创新创造更多的机会,提高用户满意度、利用与用户的互动,可以提升用户粘性,提高资源利用率的同时节约总体成本。
从个人层面而言, 科技 改变生活,各种新技术的诞生都是为了满足人类的某种需求,物联网也不例外。通过物联网可以改变人们的学习习惯。如教育机构可以通过物联网获得学生的学习习惯数据,对学生薄弱的学习环节进行定向辅导。可以提前告知车主,某个商场最近的车位在哪、哪条路堵车等。可以告知妈妈们冰箱里是否还有菜还有什么菜等等的场景。
由于这些多方面的好处,使物联网 被 广泛 的 应用。不但有效地满足了企业的成本削减效率提高 的要求 , 还帮助企业 获得新的发展机会, 使人们的生活更加的便利,人更“懒”了。
物联网是各种感知技术、通信技术、云计算、大数据、人工智能等技术的集合体。在各行各业都得到了广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息也不尽相同。企业通过大数据的不同算法和模型分析信息,提取价值数据,可以有效的帮助企业高管进行关键决策。
物联网的核心是物与物,以及人与物之间的信息交互,物联网的发展将为国家、行业及企业带来前所未有的挑战。物联网的技术特征有以下几点:
RFID 本身是一种简单的无线系统,由询问器和应答器组成,具有唯一的编码,附在实体上。这样我们可以随时掌握物体的位置及周遭环境,对目标物体进行跟踪。
是一种以机器对机器进行智能交互为核心的、网络化的应用与服务,使对象实现智能化控制。基于云计算、大数据、人工智能等平台和互联网络,可以依据获取到的数据进行决策,改变对象的行为,从而进行控制和反馈。
主要是由微型的、不同功能的传感器、微执行器、信号处理器和控制电路等组成。负责信息收集、简单处理和执行。利用传感网可以可以提高系统的自动化能力、智能化能力。
物联网的属性特征可概括为感知、传送和处理。
位于物联网的物中,集成各种不同功能的传感装置,利用RFID、二维码、传感器等感知、获取,随时随地对物体进行信息采集。
位于物联网的联中,通过各种通信网络与互联网技术的融合,将目标物体(对象)接入信息网络,随时随地进行可靠的信息交互和共享。
利用云计算、大数据等新兴技术,对海量的跨区域、跨行业、跨组织的数据和信息进行分析处理,提升对物理世界各种活动和变化的洞察力,实现自动化且智能化的决策。
通过上文的介绍,想必大家已经对物联网有了一个轮廓的理解。物联网作为新一代的信息技术的高度集成的产物,被国家列为五大新兴战略性产业之一,对于以后发展有很大的影响,同时物联网已经在各行各业得到了不同程度的实际应用,为促进企业的数字化转型,发挥了重要的作用。
随着工业40的发展,越来越多的智能化工厂、数字化工厂在国内落地开花,遍布全国。借助物联网的热度和技术,实现从研发、制造、销售、物流到后市场等关键环节的全流程标准化、智能化。比如:
随着智能化 社会 的到来,智能建筑、智能家电、智能家居正在逐步走进我们的生活。智能家居是以家为平台,兼备建筑、自动化,智能化于一体的高效、舒适、安全、便利的家居环境,是物联网生活化的应用场景之一。物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。通过网络等信息通信技术手段实现对家居电器等的智能控制,使其能够按照人们的设定工作运行,而不论距离的远近。智能化与远程控制是智能家居的两大特点,这也是物联网的属性。
随着物联网的发展,智能家居可提供的场景不胜枚举,如通过手机可以远程控制家中的摄像头,查看家里情况,甚至可以通过摄像头和家人聊天;通过红外开关对家电进行远程控制,如提前打开电饭煲,实现下班到家马上有饭吃;通过智能门锁远程对门锁进行控制,掌控何人何时回家。利用物联网实现家居智能化,使生活更加舒适、便利和安全。
经历了计算机、互联网与移动通信网两次浪潮,物联网被称为信息产业第三次浪潮,代表了下一代信息发展技术。物联网是现代信息技术发展到一定阶段后出现的一种 综合 性应用与技术,将各种感知技术、现代网络技术和人工智能与自动化技术聚合与集成,使人与物智慧对话, 实现智慧的地球 。
物联网正在积极塑造工业生产和消费世界,从零售到医疗保健,从金融到物流,智能技术已遍及每个业务和消费者领域。随着国家的支持力度不断加码,物联网将得到前所未有的发展。毋庸置疑,物联网已经成为智慧的代名词,数字化转型的基础。技术的进步通常是为了让人类的生活更美好,但如果它不能帮助我们保护和改善世界,那么任何进步都是不够的。
甚至在新冠肺炎疫情暴发之前,人类避免即将到来的气候危机的能力就已经刻不容缓。在平衡经济复苏与环境可持续性方面,疫情给我们带来了一些额外挑战,但它也可以被视为提供了一个前所未有的机会。
幸运的是,5G有可能通过一些前瞻性应用来解锁更广泛的环境管理。通过实现行为改变,如允许更多人在家或几乎在其他任何地方工作,以及通过改善车辆管理以实现高效运输等等。
以下是5G给人们生活带来改变的四种方式:
1、减少车辆污染
虽然一些政府计划呼吁电动 汽车 逐渐取代以石油为燃料的 汽车 ,但现在可以采取很多措施来减少排放。通过5G连接的车辆可以通过传感器将维修状态的数据流回制造商,例如,识别何时刹车片磨损过薄,何时需要更换。将这些数据与使用模式的数据相结合,可以允许无线软件调整以优化性能和燃油效率。未来,传感器将通过5G与其他 汽车 和基础设施中的传感器进行交互。该技术被称为Cv2x 通信技术,将为全自动 汽车 铺平道路。即使是现在,T-Mobile网络采集的匿名5G数据也可以实时显示出交通缓慢的区域,让联网 汽车 建议最佳路线,继续前进,并在此过程中节省燃料,减少排放。
在4G时代流行起来的叫车和拼车服务,预计将利用5G开发一种新的基于云计算的边缘计算基础设施。这种低延迟连接可以用于智能驾驶辅助,并通过向司机提供道路和交通状况的更新来提高安全性。与此同时,人工智能个人助理可以通过信息服务和流媒体视频改善乘客体验。
2、节约资源,减少浪费
随着经济的快速发展以及城市化进程的加快,水资源分布不均、短缺、污染等造成了严重的生态问题。连接到支持 5G 的物联网的智能水传感器不仅可以检测漏水,还可以检测水污染。5G的规模意味着可以部署更大、更敏感的传感器网络,为企业和公共组织节约和优化用水。在更大范围内,传感器可以优化农业用水以及化肥和杀虫剂的使用,方法是将天气数据与土壤和作物状况数据结合起来,帮助农民更好地配置资源,更有效地耕作,并减少对环境的影响。
3、紧急和人道主义援助
5G驱动的物联网允许易受洪水或火灾影响地区的传感器传输早期预警数据,通过触发和协调缓解措施,有可能挽救生命,并保护财产和环境。在火灾的情况下,5G不仅改善了消防员和其他机构之间的沟通,而且智能头盔等5G增强现实工具可以让消防员穿透浓烟和火焰,直接看到火灾的中心。通过5G网络传输的视频分析数据揭示了燃烧材料释放出的热量水平和气体的化学成分,为消防员提供了前所未有的见解。
4、保护自然栖息地
森林在保护环境和使人们的生活更 健康 、更愉快方面发挥着巨大的作用。除了保持森林及其本土野生动物免受火灾伤害之外,物联网传感器还可以监测树木的 健康 ,对污染、疾病或缺水造成的危险发出警报。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。
在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;
在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。
一、智能交通
物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;
高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。
社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。
该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。
二、智能家居
智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;
通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;
智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;
智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。
三、公共安全
近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。
利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。
趋势和特征
物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。
物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。
物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。
环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。
在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。
通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。
可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。
通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。
此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。
未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。
通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。
市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。
以上内容参考 百度百科-物联网
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)