物联网技术涵盖感知层、网络层、平台层和应用层四个部分。
感知层的主要功能就是采集物理世界的数据,其是人类世界跟物理世界进行交流的关键桥梁。比如在智能喝水领域会采用一种流量传感器,只要用户喝水,流量传感器就会立即采集到本次的喝水量是多少,再比如小区的门禁卡,先将用户信息录入中央处理系统,然后用户每次进门的时候直接刷卡就行。(了解更多智慧人脸识别解决方案,欢迎咨询 汉玛智慧)
网络层主要功能就是传输信息,将感知层获得的数据传送至指定目的地。物联网中的“网”字其实包含了2个部分:接入网络、互联网。以前的互联网只是打通了人与人之间的信息交互,但是没有打通人与物或物与物之间的交互,因为物本身不具有联网能力。后来发展出将物连接入网的技术,我们称其为设备接入网,通过这一网络可以将物与互联网打通,实现人与物和物与物之间的信息交互,大大增加了信息互通的边界,更有利于通过大数据、云计算、AI智能等先进技术的应用来增加物理和人类世界的丰富度。
平台层可为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑数据上报至云端,向上提供云端API,服务端通过调用云端API将指令下发至设备端,实现远程控制。物联网平台主要包含设备接入、设备管理、安全管理、消息通信、监控运维以及数据应用等。
应用层是物联网的最终目的,其主要是将设备端收集来的数据进行处理,从而给不同的行业提供智能服务。目前物联网涉及的行业众多,比如电力、物流、环保、农业、工业、城市管理、家居生活等,但本质上采用的物联网服务类型主要包括物流监控、污染监控、智能交通、智能家居、手机钱包、高速公路不停车收费、远程抄表、智能检索等。
物联网有四层平台:设备连接平台、设备管理平台、应用分析平台、应用开发平台,提供Paas服务。这都是使能平台。选择现有的IOT使能平台可以通过平台开发厂商的影响力、成功案例、全球通用性、服务持续提供能力、开发水平、方案解决能力等多方面综合考虑。一、 提供统一的终端接入
通过使能平台,为不同业务类型的所有物联网应用终端提供统一的数据接入方案,极大降低了终端接入的难度和成本。终端数据接入支持多种通讯设备、通讯协议,对接收到的数据进行辨识、分发以及报警分析等预处理。
二、 提供统一的应用基础运行平台
物联网应用软件与传统的应用软件应用相比,有底层终端类型及数量多、行业应用复杂的特点,各种行业终端数量规模通过一定的发展往往能达到百万甚至更高级别,要求使能平台能维护大量共享数据和控制数据,提供物联网应用的统一运行环境,从概念、技术、方法与机制等多个方面无缝集成数据的实时处理与历史记录,实现数据的高时效调度与处理,并保证数据的一致性,以便能够支撑所有连接终端所需要呈现的各种应用。
三、 提供统一的安全认证
以用户信息、系统权限为核心,集成各业务系统的认证信息,提供一个高度集成且统一的认证平台。
四、 统一的数据管理及数据交换
不同种类及数终端的海量数据在平台上得以集中管理并且提供统一的数据交换功能,通过平台连接各种业务相关的异构系统、应用以及数据源,满足重要系统之间无缝共享和交换数据的需要。彻底解决了由于业务不同、应用不同、系统不同所导致的信息孤岛问题,数据平台的统一性让大数据分析成为可能,让更多的应用能够因数据的开发性得以实现。
五、 提供统一的门户支撑
提供一个灵活、规范的信息组织管理平台和全网范围的网络协作环境,实现集成的信息采集、内容管理、信息搜索,能够直接组织各类共享信息和内部业务基础信息,面向不同使用对象,通过门户技术实现个性化服务,实现信息整合应用。
六、 提供多种业务基础构件
为各行业应用业务提供开发辅助工具、快速定制、地理信息服务、权限管理、数据展现及挖掘等多种平台支撑服务。通过这些基础构件,实现系统的松散耦合,提高系统的灵活性和可扩展性,保障快速开发、降低运营维护成本。常见的大数据术语表(中英对照简版):
A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte
物联网(The Internet of Things,简称IOT)的概念是把所有物品通过射频识别等信息传感设备与互联网连接起来,实现智能化识别和管理。
国际电信联盟2005年一份报告曾描绘“物联网”时代的图景:当司机出现 *** 作失误时汽车会自动报警;公文包会提醒主人忘带了什么东西;衣服会“告诉”洗衣机对颜色和水温的要求等等。
物联网把新一代IT技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道,家用电器等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合。
具体的说就是在农业、物流、能源、环保、医疗等重要领域都将推进物联网规模化应用。物联网将加速向各领域渗透应用,催生出无人零售、精准医疗、智能制造等大量新模式新业态,生产生活的“痛点”“难点”正在破题,一系列“独角兽”企业有望诞生。
扩展资料:
物联网在农业、工业、服务业、公共事业中均有很好的应用前景:
一、物联网在农业中的应用
1、农业标准化生产监测:是将农业生产中最关键的温度、湿度、二氧化碳含量、土壤温度、土壤含水率等数据信息实时采集,实时撑握农业生产的各种数据。
2、动物标识溯源:实现各环节一体化全程监控、达到动物养殖、防疫、检疫、和监督的有效结合,对动物疫情和动物产品的安全事件进行快速、准确的溯源和处理。
3、水文监测:包括传统近岸污染监控、地面在线检测、卫星遥感和人工测量为一体,为水质监控提供统一的数据采集、数据传输、数据分析、数据发布平台,为湖泊观测和成灾机理的研究提供实验与验证途径。
二、物联网在工业中的应用
1、电梯安防管理系统:该系统通过安装在电梯外围的传感器采集电梯正常运行、冲顶、蹲底、停电、关人等数据,并经无线传输模块将数据传送到物联网的业务平台。
2、输配电设备监控、远程抄表:基于移动通信网络,实现所有供电点及受电点的电力电量信息、电流电压信息、供电质量信息及现场计量装置状态信息实时采集,以及用电负荷远程控制。
3、企业一卡通:基于RFID—SIM卡,大中小型企事业单位的门禁、考勤及消费管理系统;校园一卡通及学生信息管理系统等。
三、物联网在服务产业中的应用
1、个人保健:人身上可以安装不同的传感器,对人的健康参数进行监控,并且实时传送到相关的医疗保健中心,如果有异常,保健中心通过手机提醒体检。
2、智能家居:以计算机技术和网络技术为基础,包括各类消费电子产品、通信产品、信息家电及智能家居等,完成家电控制和家庭安防功能。
3、智能物流:通过GPRS/3G网络提供的数据传输通路,实现物流车载终端与物流公司调度中心的通信,实现远程车辆调度,实现自动化货仓管理。
4、移动电子商务:实现手机支付、移动票务、自动售货等功能。
5、机场防入侵:铺设传感节,覆盖地面、栅栏和低空探测,防止人员的翻越、偷渡、恐 袭击等攻击性入侵。
四、物联网在公共事业中的应用
1、智能交通:通过cPs定位系统,监控系统,可以查看车辆运行状态,关注车辆预计到达时间及车辆的拥挤状态。
2、平安城市:利用监控探头,实现图像敏感性智能分析并与110、l19、l12等交互,从而构建和谐安全的城市生活环境。
3、 城市管理:运用地理编码技术,实现城市部件的分类、分项管理,可实现对城市管理问题的精确定位。
4、环保监测:将传统传感器所采集的各种环境监测信息,通过无线传输设备传输到监控中心,进行实时监控和快速反应。
5、医疗卫生:远程医疗、药品查询、卫生监督、急救及探视视频监控。
参考资料来源:百度百科——物联网
参考资料来源:人民网——我国在物联网前沿领域实现领跑
通过从传感器、计量器等器件获取环境、资产或者运营状态信息,在进行适当的处理之后,通过传感器传输网关将数据传递出去;同时通过传感器接收网关接收控制指令信息,在本地传递给控制器件达到控制资产、设备及运营的目的通过公网或者专网以无线或者有线的通信方式将信息、数据与指令在感知与控制层、平台服务层、应用服务层之间传递,主要由运营商提供的各种广域IP通信网络组成,包括ATM、xDSL、光纤等有线网络,以及GPRS、3G、4G、NB-IoT等移动通信网络
物联网平台是物联网网络架构和产业链条中的重要环节,通过它不仅实现对终端设备和资产的“管、控、营”一体化,向下连接感知层,向上面向应用服务提供商提供应用开发能力和统一接口,并为各行各业提供通用的服务能力,如数据路由、数据处理与挖掘、仿真与优化、业务流程和应用整合、通信管理、应用开发、设备维护服务等
丰富的应用是物联网的最终目标,未来基于政府、企业、消费者三类群体将衍生出多样化的物联网应用,创造巨大的社会价值。根据企业业务需要,在平台服务层之上建立相关的物联网应用,例如,城市交通情况的分析与预测,城市资产状态监控与分析,环境状态监控、分析与预警(如风力、雨量、滑坡),健康状况监测与医疗方案建议等
向下接入分散的物联网传感层,汇集传感数据
向上面向应用服务提供商提供应用开发的基础性平台和面向底层网络的统一数据接口,支持具体的基于传感数据的物联网应用
从设备底层到云端应用都由技术人员自行开发,对研发能力和开发时间都是不小的挑战
物联网应用存在共性需求如安全是否可以以云服务的方式提供这些功能?
物联网平台使物联网应用的快速实现成为可能,并从开发难度、功能性能和稳定可靠等多方面提供服务保证
DMP一般集成在整套端到端M2M设备管理解决方案中,解决方案提供商联合合作伙伴一起,提供通信网关、通信模块、传感器、设备管理云平台、设备连接软件,并开放接口给上层应用开发商,提供端到端的解决方案
大部分DMP提供商本身也是通信模组、通信设备提供商,如DiGi,Bosch等,本身拥有连接设备、通信模组、网关等产品和设备管理平台,因此能帮助企业实现设备管理的整套解决方案
一般DMP部署在整套设备管理解决方案中,整体报价收费;也有少量单独提供设备管理云端服务的厂商,每台设备每个月收取一定的运营管理费用
M2M连接数大、SIM卡使用量大、管理工作量大、应用场景复杂、要求灵活的资费套餐、低的ARPU值、对成本管理要求高
包含基础大数据分析服务和机器学习两大功能
未来物联网平台上的机器学习将向人工智能过渡,比如IBM Watson拥有IBM独特的DeepQA系统,结合了神经元系统,模拟人脑思考方式总结出来强大的问答系统,可帮助企业解决更多商业问题
AWS IoT可在连接了Internet的设备(如传感器、制动器、嵌入式微控制器或智能设备)与AWS云之间提供安全的双向通信,并使云中的应用程序能够与连接了Internet的设备进行交互。这样,用户能从多台设备收集遥测数据,然后存储和分析数据;也可以创建应用程序来通过手机或平板电脑控制这些设备
AWS IoT包括设备网关、消息代理、规则引擎、安全和身份服务、Device Shadow服务等组件
平台案例
通过使用AWS的服务,艾拉物联可以无需投资传统数据中心,便可提供企业级服务。在AWS的支持下,艾拉物联将全球的服务都可以整合到一个云平台上,以最小成本开拓了国际业务,使得各地都可以使用同样的开发及运维工具
AWS云服务安全、稳定、可扩展以及全球覆盖的特性加快了涂鸦业务的全球化部署,为保证海外涂鸦客户和合作伙伴能够享受到本地化的服务体验提供了坚强保障
使用AWS云平台给Sengled生迪带来的好处包括简化运维、节省人力成本、节省资源成本,同时可以灵活地扩展应用系统。AWS提供的丰富功能,使运维工程师不必研究学习传统的运维工具和方法,就可以建立起一套完整、可靠的交付系统和运维平台
物联网平台是阿里云针对物联网领域开发人员推出的一款设备管理平台。高性能IoT Hub实现设备与云端稳定通信,全球多节点部署有效降低通信延时,多重防护能力保障设备云端安全。此外,物联网平台还提供丰富的设备管理功能、稳定可靠的数据存储能力,以及规则引擎。使用规则引擎,您仅需在Web上配置简单规则,即可将设备数据转发至阿里云其他产品,获得数据采集、数据计算、数据存储的全栈服务,真正实现物联网应用的灵活快速搭建
平台案例
24小时ATM式自助售药机支持用户线下24h到店扫码付款,当场取货;线上平台下单,骑手限时送达。同时提供完备的商户管理后台,可以进行订单管理、货道管理与财务管理
仓库猫用于解决仓库的科学监测、信息化、网络化管理等问题。可以做到防火监测、防盗监测、防水监测、防潮监测、能够帮助企业快速搭建店铺的监测系统,报警系统,云存储系统
OneNET定位为PaaS服务,即在物联网应用和真实设备之间搭建高效、稳定、安全的应用平台
OneNET包括设备接入、设备管理、API,>摘要:针对当前基于物联网的物流逐步走向大数据时代,设计了一种基于物联网的物流管理系统。以物联网作为基础硬件支撑,通过RFID标签对物流数据进行采集,并通过无线网络将数据上传到服务器。利用C#语言对系统进行开发,并结合GPS导航系统对物流车辆进行实时跟踪与监控,完成物流运输中的人与货物、货物与车、货物与货物之间的交流,实现物流的智能化管理。
关键词:物联网;RFID标签;物流管理;智能物流;导航系统
随着物联网技术的发展,传统物流行业开始朝智能化、信息化方向发展。通过现代物联网技术,对传统物流中很难知晓的运输条件、运输状态等进行监测,从而更好地满足用户的需求。如生鲜食品运输中,借助物联网技术可对运输物流车中的温度、湿度、位置等数据进行实时采集与传输,让用户在接收食品的时候可第一时间了解生鲜食品运输状态,达到放心食用的目的[1]。通过这种智能化的方式,大大提高了物流行业的服务水平。因此,本文结合物联网技术,设计一种基于物联网的物流管理系统,目的就是通过加强物流管理全程监控,不断提升物流管理企业的服务水平。
1 系统设计目的与原则
本文设计的基于物联网的物流管理系统是以物流企业作为主体,为不同的消费者提供个性化的物流服务。作为一个实时监控与管理系统,在设计中除满足基本的功能需求外,还必须适当考虑系统的实用性、可维护性、可扩展性等[2],即功能设计满足用户需求、软硬件搭配合宜、可根据客户需求适时拓展功能。因此根据上述原则,基于物联网的物流管理系统功能设计要充分满足用户的基本需求,并可实现对整个物流装卸、配送、仓储等过程的管理,从而为消费者提供更加方便、快捷和安全的物流服务;适应未来功能需求变化,可支持对系统 进行二次开发,并预留相关的功能接口,满足未来系统性能需求。对系统的开发必须要考虑维护的成本,同时方便对数据进行备份、恢复等,提高数据的可维护性。
2 基于物联网的系统整体架构设计
该系统设计的目的是实现物流企业对物流配送的实时管理,同时为消费者提供货物实时查询信息
我们公司就是可以开发的,如果你们公司内部没有这样的技术,团队,可以考虑找软件公司开发,这样也省去了你们学习和犯错的时间,给有技术的软件公司开发相对来说,比你们自己开发的优势还是有很多的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)