指纹图像获取:通过专门的指纹采集仪可以采集活体指纹图像。目前,指纹采集仪主要有活体光学式、电容式和压感式。对于分辨率和采集面积等技术指标,公安行业已经形成了国际和国内标准,但其他还缺少统一标准。根据采集指纹面积大体可以分为滚动捺印指纹和平面捺印指纹,公安行业普遍采用滚动捺印指纹。另外,也可以通过扫描仪、数字相机等获取指纹图像。
指纹图像压缩:大容量的指纹数据库必须经过压缩后存储,以减少存储空间。主要方法包括JPEG、WSQ、EZW等。[4]
指纹图像处理:包括指纹区域检测、图像质量判断、方向图和频率估计、图像增强、指纹图像二值化和细化等。
物联网在生活中的应用包括第二代身份z、ETC自动收费、智能物流等。
1、第二代身份z:
第二代身份z最大的改革就是它的防伪技术,第二代身份z有定向光变色“长城”图案、光变光存储“中国CHINA”字样、防伪膜、等防伪技术,二代身份z采用的是非接触式IC芯片卡和指纹感应,这是典型的物联网基础应用。
2、ETC自动收费系统:
ETC自动收费系统可以让来回的车辆在经过拦车杆时只需要减速行驶,就可以完成认证、计费,在很大程度上节省了人力和物力。但因为要升级收费系统,还需要在车辆上面安装识别芯片,所以很多地方是采用ETC与人工收费两种系统。
3、智能物流:
物联网技术同样运用到运输物流业,将转感器安装在货车和正在运输的各个独立部件上,从一开始中央系统就追踪这些货物直到结束,这样便可以全面实时的追踪这些车辆和货物行程,不仅可以实时更新货物信息,还可以防止货物被盗。
扩展资料:
物联网的运用范围:
物联网将现实世界数字化,应用范围十分广泛。物联网拉近分散的信息,统整物与物的数字信息,物联网的应用领域主要包括以下方面:运输和物流领域、工业制造、健康医疗领域范围、智能环境(家庭、办公、工厂)领域、个人和社会领域等,具有十分广阔的市场和应用前景。
在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可以查出它们的具体位置。通过物联网可以用中心计算机对机器、设备、人员进行集中管理、控制,也可以对家庭设备、汽车进行遥控,以及搜索位置、防止物品被盗等,类似自动化 *** 控系统。
同时透过收集这些小事的数据,最后可以聚集成大数据,包含重新设计道路以减少车祸、都市更新、灾害预测与犯罪防治、流行病控制等等社会的重大改变,实现物和物相联。
参考资料来源:百度百科-物联网
指纹识别器指纹识别器读取指纹有多种不同方式,其中电容式传感技术的基本原理是,它根据活体手指——请注意“活体”一词——表层上的电阻变化传导指纹图像。皮肤的表皮层,包括手指的表皮层的细胞是非活体的。剥掉非活体细胞的表皮层可以看到第一层活体皮肤细胞,这些皮肤细胞具有一定量电阻。它们还在皮肤表层上组成特定形状——常见的指纹嵴线和沟。细胞中的特定电学品质与细胞的排列方式这二者的结合使得皮肤表面的电阻能够被测量到且其变化唯一。这就是电容式读取器的工作方式——它首先读取手指活体表皮的电阻变化,然后传导显示这些变化的手指图。该图看起来就像警察展示的标准指纹图像。电阻变化图称作指纹图像。产生指纹图像后会对其进行保存,或将其与另一个指纹图像进行比较,以确定它们是否相同。电容式传感器技术在指纹界中占有主导地位;其它所有指纹识别技术均为技术跟随者。该技术还非常成熟、稳定可靠,并且是当今市场中价格相对最低廉的指纹传感技术之一。
主要用途:
1、取代
用指纹取代 Microsoft® Windows® 及 BIOS 密码,从而可实现轻松、快速、安全的系统访问。从睡眠和待机模式中刷动手指也可登录到 PC。当前在某些笔记本电脑系统上可实现 BIOS 密码(也称为开机密码)替换。
2、管理器
使用指纹以及密码管理器访问 Web 站点及应用程序。密码管理器可将多个 Web 及应用程序密码保存在一个受硬件保护的位置中,以及通过一个密码和刷动手指访问这些密码。
3、身份验证
登录到 Windows 时刷动手指以及使用 网络自适应软件(Access Connections)进行无线身份验证。
在访问 Windows、Web 站点及某些应用程序时实现安全的双重身份验证(密码与指纹)。客户端安全解决方案使这一点成为可能。
4、加密数据
使用指纹访问加密数据。可使用文件与文件夹加密软件进行数据加密。
优点缺点:
(一)优点:
1、指纹是人体独一无二的特征,并且它们的复杂度足以提供用于鉴别的足够特征;
2、如果要增加可靠性,只需登记更多的指纹、鉴别更多的手指,最多可以多达十个,而每一个指纹都是独一无二的;
3、扫描指纹的速度很快,使用非常方便;
4、读取指纹时,用户必需将手指与指纹采集头相互接触,与指纹采集头直接;
5、接触是读取人体生物特征最可靠的方法;
6、指纹采集头可以更加小型化,并且价格会更加的低廉。
(二)缺点:
1、某些人或某些群体的指纹指纹特征少,难成像;
2、过去因为在犯罪记录中使用指纹,使得某些人害怕“将指纹记录在案”;
3、实际上现在的指纹鉴别技术都可以不存储任何含有指纹图像的数据,而只是存储从指纹中得到的加密的指纹特征数据;
4、每一次使用指纹时都会在指纹采集头上留下用户的指纹印痕,而这些指纹痕迹存在被用来复制指纹的可能性。
主要用于提高用户信息安全,生物识别技术是目前最为方便与安全的识别技术,利用生物识别技术进行身份认定,安全、可靠、准确。
一、脸部扫描识别
借助个人特质(比如脸部特质,指纹或者用户所拥有的设备)来解锁网站,应用软件和设备。这项技术不光能够让用户不用再记密码,同时它也能让用户通过设置多重安全因素来提升安全等级。
二、指纹识别技术
通过显示屏“感知”你的指纹。设备生产商就无需考虑指纹阅读器在平板电脑或者手机上的位置,这样将会出现构造更为“紧凑”的设备,即使用户手指上有汗或其他液体。
三、虹膜识别技术
主要通过扫描用户眼球静脉图案来识别用户身份,还可以给常用的APP加密。由于眼球虹膜有着比指纹识别更加高的安全等级,因此非常有望成为继指纹、语音识别之后的又一个能够大量使用在移动设备上的生物技术。
四、语音识别技术
为数不多的将语音识别作为解锁功能的设备之一,用户可以使用语音,然后在智能手机上启用“语音匹配解锁”设置。如此一来只有你能打开自己的设备,别人没有你的声音无法打开。
总体上来说,随着时代的发展,技术的不断进步,生物识别技术也将迎来新的变化和需求,生物识别技术与互联网、物联网的交集将成为各行业的着力点。当前的单一的生物识别技术各有优缺点,在应用上难免会出现一些问题。所以,在一些安全等级要求较高的应用场景当中,往往会采用两种甚至两种以上的生物识别技术进行验证。随着物联网时代的到来,生物识别将拥有更为广阔的市场前景。
1、全面感知
利用无线射频识别(RFID)、传感器、定位器和二维码等手段随时随地对物体进行信息采集和获取。 感知包括传感器的信息采集、协同处理、智能组网,甚至信息服务,以达到控制、指挥的目的。
2、可靠传递
是指通过各种电信网络和因特网融合,对接收到的感知信息进行实时远程传送,实现信息的交互和共享,并进行各种有效的处理。在这一过程中,通常需要用到现有的电信运行网络,包括无线和有线网络。
由于传感器网络是一个局部的无线网,因而无线移动通信网、3G网络是作为承载物联网的一个有力的支撑。
3、智能处理
是指利用云计算、模糊识别等各种智能计算技术,对随时接受到的跨地域、跨行业、跨部门的海量数据和信息进行分析处理,提升对物理世界、经济社会各种活动和变化的洞察力,实现智能化的决策和控制。
扩展资料:
基本功能
在线监测:这是物联网最基本的功能,物联网业务一般以集中监测为主、控制为辅。
定位追溯:一般基于传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等GPS(或其他卫星定位,如北斗)和无线通信技术,或只依赖于无线通信技术的定位,如基于移动基站的定位、RTLS等。
报警联动:主要提供事件报警和提示,有时还会提供基于工作流或规则引擎(Rule“sEngine)的联动功能。
指挥调度:基于时间排程和事件响应规则的指挥、调度和派遣功能。
预案管理:基于预先设定的规章或法规对事物产生的事件进行处置。
安全隐私:由于物联网所有权属性和隐私保护的重要性,物联网系统必须提供相应的安全保障机制。
远程维保:这是物联网技术能够提供或提升的服务,主要适用于企业产品售后联网服务。
在线升级:这是保证物联网系统本身能够正常运行的手段,也是企业产品售后自动服务的手段之一。
参考资料来源:百度百科-物联网概念
识别技术主要是指加密、识别管理、识别编码与识别方案,不包括无中心自治体系。
所谓识别技术,也称为自动识别技术,自动识别技术简称AIDC,是一项融合了计算机技术与电、光和通信以及互联网等技术的综合性技术;借由自动识别技术,让物品具备传递信息的功能是联结物理世界和信息世界的至关重要的一环,是物联网所有上层结构的基础。
自动识别技术主要包括针对物(无生命)的识别和针对人(有生命)的识别两类。无生命识别技术包括:条形码识别技术、智能卡(SmartCard)技术、射频识别技术。有生命识别技术包括、声音识别技术、人脸识别、指纹识别。
指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,可以称为指纹的细节特征点(minutiae)。由于指纹具有终身不变性、唯一性和方便性,已经几乎成为生物特征识别的代名词,因为其高度的独有特征具备十分高的安全保障。
以下是物联网常见的应用场景:1、车联网
车联网行业中,车载智能终端、车载扫码支付设备、行车记录仪、车载综合监控/DVR。车载设备借助物联卡,流量卡实现车与车、人、路、平台之间的联系。
2、智慧物流
智慧物流是指物联网用于物流行业,在物流的运输、仓储、包装、装卸、配送,大大降低了物流运输成本,提高运输效率,在物流中的运用大致是这四个方向:仓储管理、运输监测、冷链物流、智能快递柜。
3、智能穿戴
智能穿戴其实就是指智能手表、智能手环、智能眼镜等,物联网卡是智能穿戴行业不可或缺的一部分。
4、智慧城市
智慧城市是未来城市发展的方向和趋势,通过物联网、云计算、大数据、空间地理信息集成等智能计算技术的应用,使得城市管理、教育、医疗、交通运输、住宅等更互联、高效和智能,人们可以随时随地享受到便利的生活。
5、智能安防
安防是物联网的一大应用场景,智能安防主要包括三大部分,智能门禁、报警系统、监控系统,行业中主要以安防监控为主。
6、智慧农业
将物联网技术运用到农业中去,使传统农业更具“智慧”,从而实现农业无人化、自动化、智能化管理。
7、智慧医疗
安全健康也是我们非常关心的问题,物联网技术在医疗行业中有着极大的作用,物联网卡将设备进行连接,实现信息实时采集和稳定传输数据,对医疗行业的服务水平和效率有着积极的促进作用。在医疗中的运用大致是这两个场景:可穿戴医疗设备、数字化医院。
导语:指纹识别技术通常使用指纹的总体特征如纹形、三角点等来进行分类,再用局部特征如位置和方向等来进行用户身份识别。尽管指纹只是人体皮肤的小部分,但是,它蕴涵着大量的信息。那么,接下来就让我们一起来具体的了解以下关于指纹识别是怎么进行的内容吧。文章仅供大家的参考!
指纹识别是怎么进行的1指纹图像的获取
指纹图像的采集是自动指纹识别系统的重要组成部分。早期的指纹采集都是通过油墨按压在纸张上产生的。20世纪80年代,随着光学技术和计算机技术的发展,现代化的采集设备开始出现。
传感器是一种能把物理量或化学量变成便于利用的电信号的器件。在测量系统中它是一种前置部件,它是被测量信号输入后的第一道关口,是生物认证系统中的采集设备。
这些传感器根据探测对象的不同,可分为光学传感器、热敏传感器和超声传感器;根据器件的不同,可分为CMOS器件传感器和CCD器件传感器。它们的工作原理都是:将生物特征经过检测后转化为系统可以识别的图像信息。在生物认证系统中,可靠和廉价的'图像采集设备是系统运行正常、可靠的关键。
2指纹图像的增强
常见的预处理方法如下:
(1)采用灰度的均衡化,可以消除不同图像之间对比度的差异。
(2)使用简单的低通滤波消除斑点噪声、高斯噪声。
(3)计算出图像的边界,进行图像的裁剪,这样可以减少多余的计算量,提高系统的速度。
常用图像增强算法具体包括以下几种:
(1)基于傅里叶滤波的低质量指纹增强算法;
(2)基于Gabor滤波的增强方法;
(3)多尺度滤波方法;
(4)改进的方向图增强算法;
(5)基于知识的指纹图像增强算法;
(6)非线性扩散模型及其滤波方法;
(7)改进的非线性扩散滤波方法。
目前最新的分割算法有以下几种:
(1)基于正态模型进行的指纹图像分割算法;
(2)基于马尔科夫随机场的指纹图像分割算法;
(3)基于数学形态学闭运算的灰度方差法;
(4)基于方向场的指纹图像分割算法。
3指纹特征的提取
近年来,新的指纹特征提取算法主要包括以下几种:
(1)基于Gabor滤波方法对指纹局部特征的提取算法。
(2)基于CNN通用编程方法对指纹特征的提取算法。
(3)基于IFS编码的图像数字化技术,即建立IFS模型,计算源图像与再生图像之间的相似性,快速提取指纹图像的特征。
(4)基于脊线跟踪的指纹图像特征点提取算法。该算法可以直接从灰度指纹图像中有效提取细节点和脊线骨架信息。
(5)基于小波变换和ART(自适应共振理论)神经网络的指纹特征提取算法。
4指纹图像的分类与压缩
常用的指纹分类技术有以下几种:
(1)基于规则的方法,即根据指纹奇异点的数目和位置分类。
(2)基于句法的方法。这种方法的语法复杂,推导语法的方法复杂、不固定。这种方法已经逐渐被淘汰了。
(3)结构化的方法,即寻找低层次的特征到高层次的结构之间相关联的组织。
(4)统计的方法。
(5)结合遗传算法和BP神经元网络的方法。
(6)多分类器方法。
常用的压缩算法有以下两种:
(1)图像压缩编码方法:包括无损压缩(熵编码)和有损压缩(量化)。
(2)基于小波变换的指纹压缩算法:包括WSQ算法、DjVu算法、改进的EZW算法等。
5指纹图像的匹配
传统的指纹匹配算法有很多种:
(1)基于点模式的匹配方法:如基于Hough变换的匹配算法、基于串距离的匹配算法、基于N邻近的匹配算法等。
(2)图匹配及其他方法:如基于遗传算法的匹配、基于关键点的初匹配等。
(3)基于纹理模式的匹配:如PPM匹配算法等。
(4)混合匹配方法等。
近几年,又出现了如下新的匹配算法:
(1)基于指纹分类的矢量匹配。该法首先利用指纹分类的信息进行粗匹配,然后利用中心点和三角点的信息进一步匹配,最后以待识别图像和模板指纹图像的中心点为基准点,将中心点与邻近的36个细节点形成矢量,于是指纹的匹配就转变为矢量组数的匹配。
(2)基于PKI(Public Key Infrastructure,公钥基础设施)的开放网络环境下的指纹认证系统。
(3)实时指纹特征点匹配算法。该算法的原理是:通过由指纹分割算法得到圆形匹配限制框和简化计算步骤来达到快速匹配的目的。
(4)一种基于FBI(Federal Bureauof Investigation)细节点的二次指纹匹配算法。
(5)基于中心点的指纹匹配算法。该算法利用奇异点或指纹有效区域的中心点寻找匹配的基准特征点对和相应的变换参数,并将待识别指纹相对于模板指纹作姿势纠正,最后采用坐标匹配的方式实现两个指纹的比对。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)