数字化转型是企业追逐的新目标也是必经之路,甚至可以说“无数字化就会面临淘汰”。传统的信息化方式已经很难帮助企业应对极端条件下的企业发展,如这两年的疫情,给国家和企业造成的损失无可计量,对传统企业更是致命打击,也正是诸如此类的突发事件,类似加速一样,带来了数字化的指数发展,加快了行业的数字化普及。
物联网是“新基建”的核心要素,也是数字化转型的关键节点。传统制造企业已不再是埋头造东西了,而是通过收集产品的各项使用指标、用户习惯等数据,优化产品,提升用户满意度。每个产品都可以通过不同的网络介质与云端通信,实现数据的高效、稳定传输。
所以说要实现数字化转型,物联网是必经之路。
物联网 归根结底还是一种以网络为介质将万物进行互联网的网络。只不过,这网络不再局限于以前的局域网,而是通过各种新的通信技术,如5G 。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递到云端 。
物联网初步分为三个层次,有物理层(也被称为感知层),网络层和应用层。
也称为感知层,主要是由各种的传感器元器件构成,如温、湿度传感器、高度传感器、方向传感器、R FID 标签和读写器等等。它本身是对外界各种信号的感知,类似人的五感,采集各种信息的来源,主要功能就是识别物体,采集信息。
负责传递和处理感知层获取的信息,由各种网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成。
负责物联网和用户(包括人、组织和其他系统)的人机接口,与各行各业的业务需要进行对接,实现物联网的智能应用。
物联网技术已经不再局限于某个企业或者行业,随着快速的发展,物联网已涉及到智慧安防、智慧能源、智慧家居、智慧城市等的建设。所以必须快速的形成自主的知识产权,掌握物联网的核心技术。
从企业层面而言,通过应用物联网可以最直观、最优先的获得终端用户使用产品的第一手数据, 有助于 企业高层在企业战略、营销、研发、运营等多板块的决策。
随着技术的不断更新发展 ,企业 最终 将会成为物联网解决方案的执行者, 深知物联网可以为企业带来的无限红利,如为企业在行业内的创新创造更多的机会,提高用户满意度、利用与用户的互动,可以提升用户粘性,提高资源利用率的同时节约总体成本。
从个人层面而言, 科技 改变生活,各种新技术的诞生都是为了满足人类的某种需求,物联网也不例外。通过物联网可以改变人们的学习习惯。如教育机构可以通过物联网获得学生的学习习惯数据,对学生薄弱的学习环节进行定向辅导。可以提前告知车主,某个商场最近的车位在哪、哪条路堵车等。可以告知妈妈们冰箱里是否还有菜还有什么菜等等的场景。
由于这些多方面的好处,使物联网 被 广泛 的 应用。不但有效地满足了企业的成本削减效率提高 的要求 , 还帮助企业 获得新的发展机会, 使人们的生活更加的便利,人更“懒”了。
物联网是各种感知技术、通信技术、云计算、大数据、人工智能等技术的集合体。在各行各业都得到了广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息也不尽相同。企业通过大数据的不同算法和模型分析信息,提取价值数据,可以有效的帮助企业高管进行关键决策。
物联网的核心是物与物,以及人与物之间的信息交互,物联网的发展将为国家、行业及企业带来前所未有的挑战。物联网的技术特征有以下几点:
RFID 本身是一种简单的无线系统,由询问器和应答器组成,具有唯一的编码,附在实体上。这样我们可以随时掌握物体的位置及周遭环境,对目标物体进行跟踪。
是一种以机器对机器进行智能交互为核心的、网络化的应用与服务,使对象实现智能化控制。基于云计算、大数据、人工智能等平台和互联网络,可以依据获取到的数据进行决策,改变对象的行为,从而进行控制和反馈。
主要是由微型的、不同功能的传感器、微执行器、信号处理器和控制电路等组成。负责信息收集、简单处理和执行。利用传感网可以可以提高系统的自动化能力、智能化能力。
物联网的属性特征可概括为感知、传送和处理。
位于物联网的物中,集成各种不同功能的传感装置,利用RFID、二维码、传感器等感知、获取,随时随地对物体进行信息采集。
位于物联网的联中,通过各种通信网络与互联网技术的融合,将目标物体(对象)接入信息网络,随时随地进行可靠的信息交互和共享。
利用云计算、大数据等新兴技术,对海量的跨区域、跨行业、跨组织的数据和信息进行分析处理,提升对物理世界各种活动和变化的洞察力,实现自动化且智能化的决策。
通过上文的介绍,想必大家已经对物联网有了一个轮廓的理解。物联网作为新一代的信息技术的高度集成的产物,被国家列为五大新兴战略性产业之一,对于以后发展有很大的影响,同时物联网已经在各行各业得到了不同程度的实际应用,为促进企业的数字化转型,发挥了重要的作用。
随着工业40的发展,越来越多的智能化工厂、数字化工厂在国内落地开花,遍布全国。借助物联网的热度和技术,实现从研发、制造、销售、物流到后市场等关键环节的全流程标准化、智能化。比如:
随着智能化 社会 的到来,智能建筑、智能家电、智能家居正在逐步走进我们的生活。智能家居是以家为平台,兼备建筑、自动化,智能化于一体的高效、舒适、安全、便利的家居环境,是物联网生活化的应用场景之一。物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。通过网络等信息通信技术手段实现对家居电器等的智能控制,使其能够按照人们的设定工作运行,而不论距离的远近。智能化与远程控制是智能家居的两大特点,这也是物联网的属性。
随着物联网的发展,智能家居可提供的场景不胜枚举,如通过手机可以远程控制家中的摄像头,查看家里情况,甚至可以通过摄像头和家人聊天;通过红外开关对家电进行远程控制,如提前打开电饭煲,实现下班到家马上有饭吃;通过智能门锁远程对门锁进行控制,掌控何人何时回家。利用物联网实现家居智能化,使生活更加舒适、便利和安全。
经历了计算机、互联网与移动通信网两次浪潮,物联网被称为信息产业第三次浪潮,代表了下一代信息发展技术。物联网是现代信息技术发展到一定阶段后出现的一种 综合 性应用与技术,将各种感知技术、现代网络技术和人工智能与自动化技术聚合与集成,使人与物智慧对话, 实现智慧的地球 。
物联网正在积极塑造工业生产和消费世界,从零售到医疗保健,从金融到物流,智能技术已遍及每个业务和消费者领域。随着国家的支持力度不断加码,物联网将得到前所未有的发展。毋庸置疑,物联网已经成为智慧的代名词,数字化转型的基础。 1)物联网这个概念其实只是顺势而行的,在现在整个科技发展潮流来看,下一步的进展大体就是移动互联网以及将更多的电器设备连接进互联网以此得以被 *** 控,让我们的生活更为便捷。因此,物联网这个概念就是在这种环境下产生了,它是一个对现有科技的综合利用和发展方向的系统概括。
2)另外,物联网这个概念是国内某些专家提出来的(而在国内至今为止都是做到的人少空头讲的人多,木有法子),在国外它有另外一个更为专业的名词: cyber physical system 直译过来,就是物物相连的系统。
这样新出现的词语还有:大数据、视频流、潜水、窗口、桌面、充电、放水、绿色、亮点、登陆、接轨。
1、大数据
IT行业术语,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
2、窗口
原意是窗户,新含义是计算机人机会话界面的一个屏幕上的矩形区域。还有一个新意思是“满足某种条件的时机”,例如“火箭发射窗口”、“成品油调价窗口”。
3、桌面
原来的意思是桌子上用来放东西的平面。新的含义是进入计算机的视窗 *** 作系统平台时,显示器上显示的背景。
4、充电
原来是指把直流电源接到蓄电池的两极上使蓄电池获得放电能力,现比喻通过学习补充知识,提高技能等。
5、放水
原来是指把水放出去,而现在常指体育比赛中串通作弊,一方故意输给另一方。
6、接轨
原来指火车轨道接起来了,现比喻两种事物彼此衔接起来。
并不是。物联网,简而言之就是“物物相连的互联网”。即通过射频识别(RFID)(RFID+互联网)、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。侧重的是物品与互联网连接,比如智能家居。
三网融合是指电信网、广播电视网、互联网在向宽带通信网、数字电视网、下一代互联网演进过程中,三大网络通过技术改造,其技术功能趋于一致,业务范围趋于相同,网络互联互通、资源共享,能为用户提供语音、数据和广播电视等多种服务。侧重的是电信网、电视网、互联网合一,三网之间互联互通。现今世界网络和数据普及,不单止智能手机能连接网络,就连手表,闹钟,家电等日常用品,也能即时在网络中提取资讯,并配合环据数据作出分析,将最好的体验反馈给 用家。而透过网络来连接人,流程,资讯和装置这个概念,亦是我们平常所说的物联网(物联网,又名物联网)。
承接上文介绍了雾计算的简单的应用和由来,下文将会介绍物联网的一个重要技术 - 边缘计算(Edge computing)。下文将会阐述边缘计算的由来,并介绍它与物联网的关系,而且会利用无人驾驶作为用例,介绍云计算的短处和边缘计算的应用。
先定义一下边缘计算(wikepedia,2019):
这里提到很多艰涩的专业名词,例如是“分散式运算”,“节点”等,其实只是描述:边缘技术是一种技术将大型应用程式的一部分转移到(即分散式运算)日常设备中处理(即边缘节点中)。
在云计算的典型结构中(如上图),通常可分为“云(云层) - 网(雾层) - 端(边缘)”三层。“端”这一层覆盖所有终端的应用程式,亦通常是被管理的角色。当云计算一计算出结果,就会到透过“网”层,将指令发送到“端”层的应用程式执行,而应用程式收到数据后,则会发送到“云”层作计算。
而边缘计算则可以想像为给予“端”层一定程度的“自治”。在边缘计算的架构中,终点被赋予简单的存储和计算能力(与雾计算不同,这里重点是“简单”的功能) ,令它能偶尔脱离云的管理,并根据环境数据作出回应。
增加终端系统简单的计算和存取能力看似一小步,但其实这个布局有着莫大的好处,当中包括:
- 低延迟:数据由近场产生,能快速回应
- 独立性:在没有网络连接下,系统亦能运作
- 合规性:无需传送用户资料,保护个人数据
- 简化数据:终端先处理部份数据,数据简化后才向云服务器传输
- 安全性:数据传输减少,减少网络安全风险
无人驾驶是边缘计算其中一个经典用例,亦是一个很好例子说明云计算的短处和为什么需要边缘计算。
下图展示的是常用的云计算架构,当中包括1)一架智能汽车(客户端),并且正在使用无人驾驶功能,2)互联网(Internet),用作传输数据,以及3)云服务(云计算)服务器),用作提供无人驾驶服务。
假设汽车正在以60ms-1的速度行驶,并在起始位置感测到前方3m有阻碍物。由于汽车正在使用云计算的架构,汽车本身并没有分析的功能,汽车会将感测到的影像 传送到云服务器中作分析(步骤1)。
很不幸地,由于汽车现在在北区甚远,信息在005s后才能到云服务 无上停驶,但也要经过005s才能将指令发送到汽车上执行(步骤2)。
在这段发送信息到回收指令的过程中(~01s),汽车会继续以均速行驶(60ms-1),并到6m后(= 60ms-1×01s)才会收到指令停下来 。而且会撞到在3m前的路人,酿成车祸。
汽车在起始位置感测到前方3m有阻碍物,会立刻执行停车指令(步骤1)。然后再发送影像和决策内容到云服务器中作进阶分析(步骤2),以改善无人驾驶性能。 (注:这里看似与雾计算方式相似,但在过程中,应用程式没有作任何的数据分析,只根据感应器内容作出回应。若然是雾计算的话,感应器信息会发送到雾服务中,再作分析,然后通知终端设备作出回应。)
由此可见,云服务器距离数据产生的位置较远,因此会造成较大的延迟。而无人驾驶这些需要实时作出决策的活动,则很大机会需要使用边缘计算,使计算的服务靠近产生数据的源头,做到计算更接近实际行动。
随着科技的进步,数据传输速度的快速提升,不少日常物品,例如是家用电器,车辆等,都已经嵌入感测器,并透过网络接结与互联网交换资讯,形成了庞大的物件网络(即物联网)。
物件会在运行时会收集到大量的环境数据。有些人会问,为什么不把数据都在本地(local drive)处理,其他数据再传到云服务做储存。这可能是其中一个可以实行的方法,但如果所有数据都在本地处理,物件本身要设有很多的存储装置和处理服务器。这会大大增加电力消秏和物件重量,增加成本。
因此,最好的方法是结合云计算和边缘计算的优势做出最佳的配置。在一些决定物件重大安全性的事件(例如如上文无人驾驶例子的刹车)可将决定的主导权放到边缘上,其他没有急切性的事情,则放到云服务器低成本集中处理。透过云与边缘的良好分工,大大减少成本,亦能提高运算效率。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)