人工智能计划的成功可能取决于艺术和哲学,也取决于数据科学和机器学习。这是因为企业有效部署人工智能需要建立一个全面的团队,其中包括来自各种背景和技能集的人员,以及非技术角色。
Ness数字工程公司首席技术官MosheKranc说,“任何人工智能计划都需要IT专家和行业领域专家的结合。IT专家了解机器学习工具包:哪些算法系列最有可能解决特定问题如何调整特定的算法以提高结果的准确性而行业领域专家带来特定领域的知识:哪些数据源可用数据有多脏机器学习算法的建议质量如何如果没有行业领域专家的输入,IT专家可能无法回答这些问题。”
因此得出的结论是:人工智能的成功确实依赖于团队,而不是任何个人或角色。
SAS公司执行副总裁兼首席信息官Keith Collins说,“当建立一支有效的人工智能团队时,我们需要寻求行业专家或超级团队,而团队合作才会赢得胜利。多元化的学科是人工智能成功的关键。”
人工智能人才的四大核心类型
Collins认为人工智能团队需要四个核心类型的人员:
•了解业务流程对于建立真实场景和有价值的结果至关重要的人员。
•了解机器学习、统计、预测和优化等分析技术并且正确使用的人员。
•了解数据来自哪里,质量如何,如何维护安全和信任的人员。
•了解如何通过结果来实施分析的人工智能架构师。
Collins指出,与其他IT领导者和人工智能专家一样,这些核心学科或角色可以从各种背景中汲取灵感。他以音乐、化学、物理等学科为例。
他说:“这些学科鼓励人们从复杂的交互系统中理解科学的过程和思维。他们通常擅长建立良好实验所需的批判性思维技能和应用机器学习的成果。”
多元化人工智能团队的价值
多元化团队的价值范围广泛:例如,它可以帮助企业更好地应对人工智能偏见。解决业务问题(包括最大和最棘手的问题)也很重要,这可能是企业首先制定人工智能战略的原因之一。
Very公司高级数据科学家和物联网实践主管Jeff McGehee说,“人们普遍认为,多样化的意见对于解决所有复杂的问题至关重要。多样性与生活体验有关,专业背景是大多数人生活体验的重要组成部分,它可以为人工智能项目增加维度,并为寻找创新解决方案提供新的视角。”
McGehee还指出,建立人工智能或其他不同的团队需要企业的积极努力,并作为招聘和雇佣实践的一部分。企业会发现实现多样性可能不是一个可行的团队建设策略。
考虑到这一点,需要了解对于人工智能团队具有价值的一系列专家和角色,其中包括非技术角色。
1领域专家
人们可以将这些角色和人员视为主题专家。无论使用哪个术语,都需要了解他们对企业的人工智能计划的重要性。
McGehee说,“开发人工智能系统需要深入了解系统运行的领域。开发人工智能系统的专家很少会成为系统实际领域的专家。行业领域专家可以提供关键见解,使人工智能系统发挥最佳性能。”
Ness公司Kranc指出,这些专家可以解决其所在领域针对企业和战略的问题。
他表示,行业领域专家类型取决于要解决的问题。无论所需的洞察力是在创收和运营效率还是在供应链管理方面,行业领域专家都需要回答这些问题:
•哪些见解最有价值
•收集的有关行业领域的数据是否可以作为见解的基础
•得出的见解是否具有意义
以下将介绍一些特定的行业领域示例,但首先了解一下人工智能团队中的其他一些关键角色。
2数据科学家
Janeai公司人工智能研发主管Dave Costenaro表示,这是人工智能团队在新建项目上工作的三个关键需求中的第一个。其示例项目包括聊天代理、计算机视觉系统或预测引擎。
Costenaro说,“数据科学家有着各种背景,如统计学、工程学、计算机科学、心理学、哲学、音乐等,通常都具有强烈的好奇心,这迫使他们深入系统中寻找和使用模式,例如他们可以为人工智能项目提供什么,确定它能做什么,并训练它做到这一点。”
3数据工程师
Costenaro说,“程序员从数据科学家那里获得想法、模型、算法,并通过规范化代码、使其在服务器上运行以及成功地与适当的用户、设备、API等进行对话,并将它们变为现实。”
4产品设计师
Costenaro表示,三项关键需求的最终结果也说明了人工智能团队的非技术专业知识的价值。
他说:“产品设计师也来自各种背景,例如艺术、设计、工程、管理、心理学、哲学。他们为所需和有用的东西制定了路线图。”
5 人工智能伦理学家和 社会 学家
人工智能伦理学家和 社会 学家可能在某些部门(特别是医疗保健或政府部门)中发挥着至关重要的作用,但在广泛的使用案例中似乎可能会变得越来越重要。
McGehee说,“人工智能系统的一个重要组成部分是了解它如何影响人们,以及代表性不足的群体是否受到公平对待。如果一个系统具有前所未有的准确性,但没有产生预期的 社会 影响,它注定会失败。”
6律师
McGehee表示,在这个新兴领域也看到了对法律专业知识的单独而相关的需求。McGehee说,“GDPR法规为制定围绕算法决策的法规树立了先例。随着世界各国对人工智能在工业中的应用越来越了解,预计将出台更多的法律。精通这一领域的律师可能是一种宝贵的财富。”
由于行业领域专家如此重要,正如Kranc和McGehee所阐述的那样,有必要研究一些行业领域的具体例子,其中包括技术和非技术领域。这些领域应该是人工智能团队建设的一部分,具体取决于企业的特定目标和用例。
Janeai公司的Costenaro指出,“由于人工智能通常只是增强现有商业用例的一个使能层,因此过去支持过这个用例的团队成员仍然是具有价值的,出于同样的原因也是必不可少的。”
Costenaro提供了五个可能具有价值的人工智能贡献者的角色示例,并解释了如何在人工智能环境中调整和增强现有角色。
7 高管和策略师
Costenaro说,“企业高管领导层将需要考虑哪些业务模式可以通过人工智能实现自动化和改进,并权衡来自以下团队的新机会和风险,如数据隐私、人机交互等。”
8 IT主管
不要对非技术角色的价值感到困惑:如果没有IT,企业的人工智能战略就不会走得太远。 Costenaro指出,IT团队需要解决以下问题:“如果正在为模型培训积累和存储大量数据,那么将如何确保数据的隐私性和安全性此外,将如何存储并从服务器到客户的设备快速可靠地提供服务”
Costenaro补充道,这也将推动对DevOps专业人士和拥有云原生技术(如容器和编排)专业知识人员需求的不断增长。而IT部门有机会使用诸如聊天机器人之类的人工智能工具来简化内部服务。
9人力资源领导者
Costenaro说,“与此类似,人力资源部也有很多机会通过使用像聊天机器人这样的人工智能工具来为客户提供服务,从而提高效率。”
此外,人力资源似乎很可能成为评估组织内人工智能影响的一个重要参与者,这与McGehee将伦理学家和律师等角色包括在内并没有不同。
10营销和销售领导者
正如Kranc指出的那样,如果企业的人工智能计划与创收相关,那么应该考虑从销售和营销等领域添加领域专业知识。
Costenaro还指出,作为人工智能项目的一部分,销售和营销专业人员可能需要利用销售自动化工具和机器人流程自动化(RPA)等技术来增强他们现有的技能和流程。
11运营专家
在整个IT部门内,运营和DevOps专业人员都有特定的领域专业知识来实施人工智能计划。Costenaro列举了以下问题作为需要在哪里运用专业知识的例子:
•哪些可以实现自动化和改进
•如果使用机器学习模型,将如何创建新的数据收集流程以持续培训和改进这些模型
•可以从开源存储库中获取现成的、预先训练好的模型和/或数据集,从而获得巨大的先机吗第三方供应商提供的API服务是否会考虑一些任务和用例
虽然人工智能可以解决一些重大问题,但也一定会产生新的挑战。这就是构成多元化团队的根本原因。
McGehee说。“具有不同背景和个性的人员关注不同的项目细节和限制因素,这很有用,因为它提高了所有重要细节的可能性,并提供了确定解决方案的整体方法。”
什么是物联网?
物联网在之前被定义为通过射频识别(RFID)、红外线感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备按约定的协议把任何物品与互联网连接起来进行信息交换,以实现智能化识别、定位、跟踪、监控和管理的一种网络,简言之物联网就是“物物相连的互联网”。
后来被重新定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的实时共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及的信息技术的应用,都可以纳入物联网的范畴。
什么是人工智能?
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分枝,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。它是对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
互联网将信息传递给人,人是有智能的,看到信息后,可以通过获得的信息,作出判断然后指导下一步做什么。
当万物互联之后,一个设备获得一个信息之后,这个设备如果没有智能的话,它不能决定下一步做什么,如果最后还由人来判断下一步如何 *** 作的话,设备与人的交互,并由人决定的速度,将制约物物相连的价值。
所以物联网的设备需要通过智能,处理获得的信息,并决定下一步做什么。
而根据物联网的几个提出机构看,智能都是起到关键的作用。
2009年的物联网热,最初是IBM提出的智慧地球的战略,核心是智能!
1、通过机理模型,包括理论模型集,如自动化理论,流体力学模型;逻辑模型集,逻辑框架、流程步骤,管理时序;部件模型集;工艺模型集,故障模型集;仿真模型集。
2、将人的经验固化在系统中。
3、通过数据驱动模型:包括数据分析,机器学习,控制系统。
其中机器学习,神经网络就是人工智能的方式。
而且机理模型相对于由人工智能创造的智能的比例是非常小的,未来的人工智能将帮助人类找到未来很多未知的模型。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)