物联网的关键技术

物联网的关键技术,第1张

院校专业:

基本学制:三年 | 招生对象: | 学历:中专 | 专业代码:710102

培养目标

培养目标

本专业培养德智体美劳全面发展,掌握扎实的科学文化基础和传感器应用、网络通 信、综合布线、物联网项目工程实施等知识,具备物联网生产施工、物联网技术服务、 系统运维等能力,具有工匠精神和信息素养,能够从事物联网设备安装与调试、物联网 系统集成实施、物联网系统监控、物联网产品制造与检测、售后技术支持等工作的技术 技能人才。

职业能力要求

职业能力要求

1 具有物联网产品装配、焊接、检测与调试的能力; 2 具有感知层设备质量检测、典型传感网安装组建与调试的能力; 3 具有物联网项目施工图识读、物联网设备安装与调试的能力; 4 具有物联网平台、数据库及应用程序安装、配置与运行维护的能力; 5 具有物联网样机试制、数据采集与标注、应用程序辅助开发的能力; 6 具有物联网系统应用程序安装、使用、维护、系统监控与故障维修的能力; 7 具有初步将 5G、人工智能等现代信息技术应用于物联网领域的能力; 8 具有终身学习和可持续发展的能力。

专业教学主要内容

专业教学主要内容

专业基础课程:电工电子技术与技能、计算机组装与维修、计算机网络技术基础、 程序设计基础。 专业核心课程:单片机技术及应用、数据库技术及应用、传感器与传感网技术应用、 网络综合布线技术、物联网技术及应用、物联网设备安装与调试、物联网运维与服务。 实习实训:对接真实职业场景或工作情境,在校内外进行物联网综合布线、物联网 电子产品制作、物联网设备安装与调试、物联网工程实施等实训。在物联网系统集成企 业、物联网产品制造企业等单位进行岗位实习。

专业(技能)方向

专业(技能)方向

职业资格证书举例

职业资格证书举例

职业技能等级证书:物联网智能家居系统集成和应用、物联网安装调试与运维、物 联网工程实施与运维

继续学习专业举例

接续高职专科专业举例:物联网应用技术、工业互联网技术 接续高职本科专业举例:物联网工程技术、工业互联网技术 接续普通本科专业举例:物联网工程、计算机科学与技术

就业方向

就业方向

面向物联网安装调试员等职业,物联网设备安装与调试、物联网系统运行与维护、 物联网系统监控、物联网产品制造与测试、物联网项目辅助开发和售后技术支持等岗位 (群)。

对应职业(岗位)

对应职业(岗位)

其他信息:

物联网应用技术是物联网在大学专科(高职)层次的唯一专业,属于电子信息类,升本专业为物联网工程(计算机类)。 本专业培养掌握射频、嵌入式、传感器、无线传输、信息处理、物联网域名等物联网技术,掌握物联网系统的传感层、传输层和应用层关键设计等专门知识和技能,具有从事WSN、RFID系统、局域网、安防监控系统等工程设计、施工、安装、调试、维护等工作的业务能力,具有良好服务意识与职业道德的高端技能型人才。专业课程有C语言程序设计,Java程序设计,TCP/IP网络协议,RFID技术,计算机原理,程序设计原理等。

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

物联网行业应用前景分析 2018年主要聚焦五大领域

物联网是通信网和互联网的拓展应用和网络延伸,它利用感知技术与智能装置对物理世界进行感知识别,通过网络传输互联,进行计算、处理和知识挖掘,实现人与物、物与物信息交互和无缝链接,达到对物理世界实时控制、精确管理和科学决策目的。

物联网是新一代信息技术的高度集成和综合运用,对新一轮产业变革和经济社会绿色、智能、可持续发展具有重要意义。自“智慧地球”提出以来,物联网的概念在全球范围内迅速被认可,并成为新一轮科技革命与产业变革的核心驱动力。

物联网三项关键技术支撑

作为信息化时代的重要发展阶段,物联网以互联网为基础,实现物与物之间的信息传输。发展需要的三项关键技术支撑分别为:传感器技术、RFID标签和嵌入式系统技术。

物联网的技术核心在于传感数据的获取和分析,通过对这些数据的分析以达到改善产品性能、改进运营模式等效果。面对过程中海量数据的产生,迫切需要大数据技术来进行处理分析,而云计算又将为大数据的运算提供资源层灵活性。因此,在大数据、云计算的实力助攻下,加速走向物联网时代。在未来的发展中,“物联网+大数据+云计算”的强强联合,定会带给人类生活的巨大改变,创造出无限可能。

前瞻产业研究院发布的《中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2015年全球物联网设备安装基数为154亿,截止到2017年全球物联网设备安装基数突破200亿。预计2018年全球物联网设备安装基数将达231亿。预计2020年全球物联网设备安装基数将增长至307亿。预计到了2025年全球物联网设备安装基数这一数字将达754亿。

2015-2025年全球物联网设备安装基数统计情况及预测

资料来源:前瞻产业研究院整理

中国物联网基本应用分析

我国早就1999年就已经展开了物联网技术的研究,并且在传感网方面拥有大量专利,是世界上为数不多能够实现物联网全产业链的国家之一。

关于物联网的应用领域,实际上非常广泛,涉及到人类生活的方方面面,从环境到交通,从健康到食品等,无所不能。

2018年物联网主要聚焦五大领域

1、智慧零售,借助物联网技术,感知客户消费习惯,预测潜在消费趋势,从而创造出精准销售;

2、智慧物流,打通物流中运输、仓储、配送等各个环节,实现系统感知、全面分析及处理,可参照成都物流公共信息平台;

3、
智慧能源保护,为了保证未来“子子孙孙无穷尽”的状态,环保节能已经是各行各业不得不面对的重大问题,智慧井盖协助检测水位及状态,智慧电表实现远程抄表,智慧垃圾桶自动感应等;

4、 智慧医疗,协助医院完成对人和物的智能化管理,通过打造健康档案区域医疗信息平台,实现患者、医务人员及医疗资源的信息化;

5、 智慧农业,是智慧经济中的重要组成部分,实现生产过程中的信息感知、精准管理和智能控制等。

物联网就是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13070608.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存