什么是智慧办公楼宇?如何实现?

什么是智慧办公楼宇?如何实现?,第1张

智慧楼宇是以建筑物为平台,以通信技术为主干,利用系统集成的方法,将计算机技术、网络技术、自控技术、软件工程技术和建筑艺术设计有机地结合起来,打通各个孤立系统间的信息壁垒,使楼宇成为一个信息互通的智能主体,以实现对楼宇的智能管理及其信息资源的有效利用。如何实现智慧办公楼宇呢?咻享智能为你举例几个方面:
1、智能门禁,让你“靠脸通行”
搭载先进的人脸识别算法,让门禁会“认人”,刷脸通行,无感 *** 作。同时将考勤功能融入到门禁中,让员工考勤更加便捷。
2、交互式桌面,可以指教江山的桌面
办工作作为最必不可少的硬件设备,目前只承担了承重、收纳等功能。相信在未来的办公室中,桌子将会越来越智能化。比如,把全面触控桌,桌面上摆放着日历、待办事项清单、通知、记事本、计算器等常用的应用,把无纸办公进行到底。
3、机器人帮你送快递,让快递更快
最后100米的快递配送一直是写字楼物流系统的一个痛点,怎样既安全又高效地将快递送到人们的手中,成为每个写字楼都要解决的问题,而利用物流机器人,巧妙地解决了这个问题。

作者 | 网络大数据

来源 | raincent_com

随着物联网的演变和发展,所有可以想象到的东西(或事物)和产业都将变得更加智能:智能家居和智慧城市、智能制造机械、智能汽车、智能健康等等。无数被授权收集和交换数据的东西正在形成一个全新的网络——物联网——一个可以在云中收集数据、传输数据和完成用户任务的物理对象网络。

物联网和大数据正在走向胜利之路。不过,要想从这一创新中获益,还需要解决一些挑战和问题。在本文中,我们很高兴与大家分享多年来在物联网咨询领域积累的知识。

物联网大数据如何应用

首先,有多种方法可以从物联网大数据中获益:在某些情况下,通过快速分析就足够了,而一些有价值的见解只有在经过深入的数据处理之后才能获得。

实时监测。通过连网设备收集的数据可以用于实时 *** 作:测量家中或办公室的温度、跟踪身体活动(计算步数、监测运动)等;实时监测在医疗保健中被广泛应用(例如,获取心率、测量血压、糖分等);它还成功地应用于制造业(用于控制生产设备)、农业(用于监测牛和作物)和其他行业。

数据分析。在处理物联网生成的大数据时,我们有机会超越监测,并从这些数据中获得有价值的见解:识别趋势,揭示看不见的模式并找到隐藏的信息和相关性。

流程控制和优化。来自传感器的数据提供了额外的上下文情境信息,以揭示影响性能和优化流程的重要问题。

▲交通管理:跟踪不同日期和时间的交通负荷,以制定出针对交通优化的建议,例如,在特定时间段增加公共汽车的数量,看看是否有改观,以及建议引入新的交通信号灯方案和修建新的道路,以减少街道的交通拥堵状况。

▲零售:跟踪超市货架中商品的销售情况,并在商品快卖完之前及时通知工作人员补货。

▲农业:根据传感器的数据,在必要时给作物浇水。

预测性维护。通过连网设备收集的数据可以成为预测风险、主动识别潜在危险状况的可靠来源,例如:

▲医疗保健:监测患者健康状态并识别风险(例如,哪些患者有糖尿病、心脏病发作的风险),以便及时采取措施。

▲制造业:预测设备故障,以便在故障发生之前及时解决。

还应注意的是,并非所有的物联网解决方案都需要大数据(例如,如果智能家居拥有者要借助智能手机来关灯,则可以在没有大数据的情况下执行此 *** 作)。重要的是要考虑减少处理动态数据的工作量,并避免存储将来没有用处的大量数据。

物联网中的大数据挑战

除非处理大量数据以获取有价值的见解,否则这些数据完全没用。此外,在数据收集、处理和存储方面还有各种挑战。

▲数据可靠性。虽然大数据永远不会100%准确,但在分析数据之前,请务必确保传感器工作正常,并且用于分析的数据质量可靠,且不会因各种因素(例如,机器运行的不利环境、传感器故障)而损坏。

▲要存储哪些数据。连网设备会产生万亿字节的数据,选择存储哪些数据和删除哪些数据是一项艰巨的任务。更重要的是,一些数据的价值还远远没有显现出来,但将来您可能需要这些数据。如果您决定为将来存储数据,那么面临的挑战就是以最小的成本做到这一点。

▲分析深度。一旦并非所有大数据都很重要,就会出现另一个挑战:什么时候快速分析就足够了,什么时候需要进行更深入的分析以带来更多价值。

▲安全。毫无疑问,各个领域的连网事物可以让我们的生活变得更加美好,但与此同时,数据安全也成一个非常重要的问题。网络罪犯可以侵入数据中心和设备,连接到交通系统、发电厂、工厂,并从电信运营商那里窃取个人数据。物联网大数据对于安全专家来说还是一个相对较新的现象,相关经验的缺失会增加安全风险。

物联网解决方案中的大数据处理

在物联网系统中,物联网体系架构的数据处理组件因输入数据的特性、预期结果等而不同。我们已经制定了一些方法来处理物联网解决方案中的大数据。

数据来自与事物相连的传感器。“事物”可以是任何物体:烤箱、汽车、飞机、建筑、工业机器、康复设备等。数据可以是周期性的,也可以是流式的。后者对于实时数据处理和迅速管理事物至关重要。

事物将数据发送到网关,以进行初始数据过滤和预处理,从而减少了传输到下一个物联网系统中的数据量。

边缘分析。在进行深入数据分析之前,有必要进行数据过滤和预处理,以选择某些任务所需的最相关数据。此外,此阶段还可以确保实时分析,以快速识别之前在云中通过深度分析所发现的有用模式。

对于基本协议转换和不同数据协议之间的通信,云网关是必需的。它还支持现场网关和中央物联网服务器之间的数据压缩和安全数据传输。

连网设备生成的数据以其自然格式存储在数据湖中。原始数据通过“流”进入数据湖。数据保存在数据湖中,直到可以用于业务目的。清理过的结构化数据存储在数据仓库中。

机器学习模块根据之前积累的历史数据生成模型。这些模型定期(例如,一个月一次)用新数据流更新。输入的数据被累积并应用于训练和创建新模型。当这些模型经过专家的测试和批准后,控制应用程序就可以使用它们,以响应新的传感器数据发送命令或警报。

总结

物联网产生大量数据,可用于实时监控、分析、流程优化和预测性维护等。然而,应该记住,从各种格式的海量数据中获得有价值的见解并不是一件容易事情:您需要确保传感器工作正常,数据得到安全传输和有效处理。此外,始终存在一个问题:哪些数据值得存储和处理。

尽管存在一些挑战和问题,但应记住,物联网的发展势头强劲,并可以帮助多个行业的企业开辟新的数字机遇。

点击上面的“帮助”查看具体使用方法。
技术框架:Spring cloud + Mybatis + mongdb + redis + smart-doc 项目描述:本系统共分为五个系统:企业自维护平台、业务工作平台、综合管理平台、数据分析平台、企业信息公开平台,主要负责企业自维护平台、业务工作平台、综合管理平台;
技术要点:1、系统采用前后端分离架构,前端使用vue、bootstrap等;后端使用spring cloud微服务:spring boot、nacos、hystrix、zuul、feign、ribbon等;使用mogdb做存储;使用redis缓存常用数据。

物联网的应用如下:
1、智能仓库。物联网一个很好的应用。它能准确的提供仓库管理各个环节数据的真实性,对于生产企业,可以根据这个数据合理的把控库存量,调整生产量。物联网中利用SNHGES系统的库位管理功能,可以准确提供货物库存位置,这就大大提高了仓库管理的效率。
2、智能物流。运用条形码、传感器、射频识别技术、全球定位等先进的物联网通信技术,实现物流业运输、仓储、配送、装卸等各个环节的智能化。不仅货物运输更加的自动化,而且作出的全面分析还能及时的处理问题对物流过程作出调整,优化了管理。大大提高了物流行业的服务水平,还节约了成本。
3、智能医疗。利用物联网技术,实现患者和医务人员、医疗机构、医疗设备的互动,实现医疗智能化。物联网医疗设备中的传感器与移动设备可以对患者的生理状态进行捕捉,把生命指数记录到电子健康文件中,不仅自己可以查看,也方便了医生的查阅,实现远程的医疗看病。很好的解决当前的医疗资源分布不均,看病难的问题。
4、智能家庭。物联网的出现让我们的日常生活更加的便捷。不远的将来一台手机,就可以 *** 作家里大多数的电器,查看它们的运行状态。寒冷的冬天,我们可以提前打开家里的空调,回到家就暖暖的。物联网还能准确的定位家庭成员的位置,你再也不用担心孩子跑的找不见人,省心省力。
5、智能农业。物联网在农业中的应用就更加的广泛。监测温湿度,监视土壤酸碱度,查看家禽的状态。在这些数据的支持下,农户就可以合理进行科学评估,安排施肥,灌溉。监测到的天气情况比如降水,风力等又为我们抗灾、减灾提供了依据。提高了产量,降低了减产风险。
6、智能交通。物联网将整个交通设备连在一起。主要是用图像识别为核心技术。可以准确的收集到交通车流量信息,通过信号灯等设备进行流量的控制,这个技术的运用,会让堵车成为历史。管理人员利用这个技术能将道路、车辆的情况掌握的一清二楚,驾驶违章无处可逃,交通事故也能及时的得到处理。人们的出行得到了很大的方便。
7、智能电力。电力工程是一项重大的民生工程,对电网的安全检测是一项必修科目。以南方电网与中国移动通过M2M技术进行的合作为例,因为物联网的运用,使得自动化计量系统开始启动,使得故障评价处理时间得到一倍的缩减。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13137240.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-10
下一篇 2023-06-10

发表评论

登录后才能评论

评论列表(0条)

保存