2019-2024年中国物联网行业应用领域市场需求与投资预测分析报告 有电子版的吗

2019-2024年中国物联网行业应用领域市场需求与投资预测分析报告 有电子版的吗,第1张

2018年中国物联网行业发展现状与2019年前景预测 边缘计算+AI推动行业新一轮增长

LoRa“涅槃”:与NB-IoT各撑“半边天”

纵观2018年,物联网行业最热闹的就是NB-IoT与LoRa技术之争,NB-IoT与LoRa都适用于低速率、低成本、低功耗、广覆盖、大连接的物联网应用场景。

不同的是,NB-IOT有国家政策支持,国内三大运营商都积极部署;而LoRa属于企业私有技术,工作在未授权频段上,存在被清频的风险。

在NB-IoT的建设上,近年来,我国物联网政策频频出台,《关于全面推进移动物联网(NB-IOT)建设发展通知》指出,到2020年,NB-IoT网络实现全国普遍覆盖,基站规模达到150万个,因此,三大运营商各显神通全力部署NB-IOT建设。

据悉,中国电信发力物联网较早,率先率先建成了全球最大的NB-IoT网络,实现城乡全覆盖,NB-IoT基站规模超过40余万个;中国联通紧随其后,在2018年5月实现物联网全国覆盖,完成30万个NB-IoT基站升级工作;中国移动也已实现了348个城市NB-IoT连续覆盖和全面商用,物联网连接数突破5亿。

值得一提的是,在模组采集方面,中国联通与中国移动在去年分别开出300万片与500万片NB-IoT通信模块项目大单,加速布局物联网。

2019年NB-IoT模组将出现大爆发,届时NB-IoT模组价格会进一步下调,随着模组市场的成本压力增大,利润空间越来越小,预计模组行业会重新洗牌,落后产能、落后规模模组厂商会被淘汰,模组厂家会进行一次大洗牌。

而对于LoRa来说,2018年像是坐了一次“过山车”。

2017年年底,工信部无线电管理局发布《微功率短距离无线电发射设备技术要求(征求意见稿)》,一时给耕耘LoRa技术的企业泼了盆“冷水”,引起了市场的极大反响,转年11月,工信部无线电管理局在认真梳理分析反馈意见建议,并与相关单位协调和沟通基础上,参考微功率短距离无线电发射设备国际使用和管理情况,对征求意见稿进行了完善和修改,让LoRa获得了“重生”。

与NB-IoT不同,LoRa凭借其网络结构简单,实现成本较低,可以按需部署的优势获得了大量企业的青睐,阿里、谷歌、腾讯、京东等互联网巨头纷纷加入LoRa联盟则是一个代表。

近年来,互联网企业纷纷将物联网作为未来重要方向进行布局,以阿里巴巴为例,曾公开表示互联网的下半场是将整个物理世界数字化,并且宣布阿里巴巴将正式进军IoT,同年阿里巴巴获得Semtech的LoRa
IP授权,在各地展开了智慧小镇园区等项目的实施,在互联网企业强势推进物联网业务和国内低功耗广域网络快速发展背景下,这一IP授权合作在很大程度上将加速国内LoRa产业链的完善。

总的来看,一年以来,NB-IoT由于政策、运营商招标及补贴等原因在表类、烟感等市场取得了不错的成绩,占据大量市场份额,没有政策支持的LoRa,凭借其网络结构简单,实现成本较低,可以按需部署的优势也从险些出局到获得业内巨头站台,实现了“涅槃重生”,日前艾瑞咨询发布报告中指出,从应用场景需求角度分析,预计到2025年NB-IoT与LoRa在国内的发展将趋于6:4的格局。

专家预测,2019年,随着技术的成熟、NB-IoT与LoRa技术优势的不断凸显,将会有根据技术特点设计的实际应用落地,其中,NB-IoT具备了规模爆发的必要条件,预计2019年将会以移动物联网为突破口,产业加速转型升级,引爆新的经济增长点。

2019年物联网行业将迎来新一轮增长

2018无疑是物联网应用落地的一年,作为这个时代下最伟大的科技产物,物联网正在取代移动互联网成为信息产业的主要驱动,统观市场,近年我国物联网市场持续保持高速增长。据前瞻产业研究院发布的《2019-2024年中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2015年我国物联网链接数量为639亿个,截止至到2017年我国物联网链接数量达到了1535亿个,相比2016年增长了698%。初步预计2018年我国物联网链接数量突破20亿个,在2019年我国物联网链接数量将达3125亿个,同比增长3852%。并预测在2020年我国物联网链接数量将达到40亿个。可以说,2019年将是物联网真正由示范到实际应用转化的起始年,诸多物联网环节领域都将在今年迎来新一轮增长。

2015-2020年我国物联网链接数量统计及增长情况预测

数据来源:前瞻产业研究院整理

物联网的下一赛道:边缘计算+AI

2018年物联网产业所表现的最大特征是市场格局基本形成,核心技术区域成熟,目前最重要的是要解决各种碎片化的物联网应用和相应的智能传感器采集终端产品的技术突破和产业化问题,如何把AI和IoT紧密结合,把边缘计算和物联网融合发展正成为物联网的下一个赛道。

物联网正在从万物互联走向万物智能的阶段,像消费、医疗等众多行业数据都将在边缘进行处理,强大的边缘计算将是物联网发展的必备能力。

据悉,随着5G临近,行业转型以及敏捷连接、智能应用等方面的需求剧增,数据量的增长速度已超过网络带宽的增长速度。预计到2020年,50%数据需要在网络边缘进行处理,以BAT为首的互联网巨头也已纷纷布局AI+边缘计算这一环节。

以百度为例,2018年百度发布智能边缘产品智能边缘BIE、智能家居云平台度家DuHome等产品,用边缘计算+AI的能力在各产业落地,腾讯则是在2018年提出人+物联网+智能网的“三张网”概念,以“一云两端”模式,打通物联网全生态链路,构筑设备、云、应用一体化应用体系。

边缘计算将作为物联网设备与远端云设备的桥梁,将数据处理、存储、应用在靠近实物的边缘上,为物联网设备提供边缘智能服务,满足行业数字化在敏捷连接,实时业务,数据优化,应用智能等方面的关键需求,使得用户可以获得更快的响应,解决设备与云端的数据传输问题,2019年,边缘计算将逐渐渗透于物联网各主要领域,根据各领域物联网技术的不同发展状态,边缘计算呈现不同的渗透率。

数据增长也大幅提升了实时性数据处理需求,因此数据在边缘进行处理将成为刚需,物联网将按照物联、智能到自主三个阶段发展。随着人工智能技术被越来越多地运用到物联网领域,AI在边缘计算领域的重要性也将越来越大。

工业物联网与智慧城市:落地爆发场景

物联网一直被视作互联网的延伸,但与商业模式极度成熟的互联网不同,物联网商业落地难、盈利路径不清晰等问题一直影响物联网的发展,随着移动互联网人口红利消耗殆尽,传统制造业瓶颈等问题日益严重,智慧城市与工业物联网正成为下一个重要的流量入口。

智慧城市正成为全球国家发展的大趋势,智慧小镇作为智慧城市建设理念的延伸和拓展,物联网智慧小镇的投入和建设、管理和运维相比于智慧城市更具优势,而且可以更好的与地方特色文化、产业相融合,更加充分的运用物联网技术,2019年随着物联网智慧小镇投入和建设的不断推进,物联网智慧小镇将实现应用和推广。

传统行业在寒冬之下,必然寻找新的出路,而网联化,一定是给传统行业提供了新的发展契机。企业普遍渴望通过新技术解放生产力,降本增效,加快转型升级,工业物联网云平台无疑成为他们转型发展的主要抓手。

2019年,随着工业物联网平台大规模的使用,平台建设将日渐成熟完善。工业物联网时代客户的个性化需求信息更加透明,以网络为主的工业物联网平台则将分布式、模块化、开放式的微服务架构,与第三方公有云或者私有云进行对接、部署和开发,将数据、软件、平台、服务等资料都聚集在平台做资源整合。

伴随着工业互联网创新发展工程示范带动,工业互联网平台设备管理能力、工业机理模型封装能力、应用服务开发能力以及跨平台服务调用能力将会大大提高,推动工业互联网平台性能优化、兼容适配和规模应用,加速技术产业成熟、打造协同创新生态。

物联网的缺点是:

1、安全性:物联网系统互联互通,通过网络进行通信。 尽管采取了任何安全措施,系统几乎不提供任何控制,并且可以引发各种网络攻击。

2、隐私:即使没有积极参与用户,物联网系统也能提供最详细的大量个人数据。

3、复杂性:设计,开发,维护和支持大型技术到物联网系统是相当复杂的。

扩展资料

物联网的优点:

1、高效的资源利用:如果了解每个设备的功能和工作方式,会提高资源的有效利用率并监控自然资源。

2、最大限度地减少人力:当物联网设备相互交互并相互通信并完成大量任务时,它们可以最大限度地减少人力。

3、节省时间:因为它减少了人力,所以它绝对节省了时间。 时间是通过物联网平台可以节省的主要因素。

4、增强数据收集:联网并收集相关数据。

5、提高安全性:系统能够将所有这些内容相互连接,那么就可以使系统更安全,更高效。

参考资料来源:百度百科—物联网

有机会,但是建议不要做泛和大,从垂直领域出发比较好,为啥这样说呢?原因如下。

1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。

国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。

国外有亚马逊、IBM、SAP、

谷歌、GE、西门子、博世等。

通过以上名单可以发现,这些公司的特点。

这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。

2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。

3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。

物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?

最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。

以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。

不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型

1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。

物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。

在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。

因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。

物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰

伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。

中心化的物联网架构存在三个问题。

一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。

其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。

第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。

简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。

边缘算力的应用场景到底有多广阔?

边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)

第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。

无人驾驶技术:

无人驾驶

智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:

一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。

二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。

三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。

其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。

机会很大

物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。

通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点

连接数告诉增长是物联网行业发展基础

物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。

物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。

物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。

物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等

物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>

  NB-IoT(Narrow Band Internet of Things)作为一种新型的物联网通信标准,在窄带宽、低功耗、广覆盖物联网领域具有诸多优势。本文概述了NB-IoT的主要优势及其技术。

  NB-IoT通信模组耗电极低。这得益于其惰性通信机制,大部分时间下,设备处于休眠状态(99%的时间)。主要在于其采用了 PSM 和 eDRX(拓展非连续接收)技术。

  一块NB-IoT通信设备的成本大约在1~5美元左右,从而满足物联网的应用场景。

  NB-IoT覆盖面积为2G、4G网的的3倍。通信上常用最大耦合损耗(MCL)来衡量通信设备信号覆盖覆盖能力。MCL与基站信号功率 P B 、接入终端信号功率 P M 有关,定义式如下:

  信号强度(信噪比)随距基站距离降低,其降低值用耦合损耗表征。而最大耦合损耗可以理解为满足通信需求的最弱信号值,即最大的信号衰减值,以此来间接表征满足通信的最远距离。
如下图所示,NB-IoT MCL比2G GPRS大了20dB,覆盖范围大了三倍。

  NB-IoT一个小区(约200KHz带宽)可接入50000个终端。远远多于LTE的1000个设备。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13230164.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-23
下一篇 2023-06-23

发表评论

登录后才能评论

评论列表(0条)

保存