物联网、云计算服务、大数据、5G等是新一代信息技术与信息资源充分利用的全新业态,是信息化发展的主要趋势,也是信息系统集成行业今后面临的主要业务范畴。
通过信息传感设备、通过约定协议,将任何对象与互联网相连接、进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。涉及的技术有:传感器技术、RFID标签、嵌入式系统技术。
基于互联网 的计算方式,通过这种方式,在网络上配置共享的软件资源、计算资源、存储产资源和信息资源,这些网络上配置的资源可以按需求提供给网上 终端设备和终端用户 。
大数据应用需要经过五个环节:
1)数据准备
2)数据存储与管理
3)计算处理
4)数据分析
5)知识展现
1什么是物联网
物联网就是利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络。物联网其实就是互联网的延伸,它包括互联网及互联网上所有的资源,兼容互联网所有的应用,但物联网中所有的元素都是个性化和私有化。
物联网的影响
物联网成熟之后,真正实现了万物互联,即“人与人、人与物、物与物”互联,世间一切都连接起来。物联网使得连接起来的终端呈指数级增长,产生的数据也会呈指数级增长。物联网必将是下一个推动世界高速发展的“重要生产力”,一方面可以提高经济效益,很大基础上节约成本;另一方面可以为全球经济的复苏提供技术动力,将是继通信网之后的另一个万亿级市场。
把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。
2什么是区块链
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。
区块链的特点
广义上来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和 *** 作数据的一种全新的分布式基础架构与计算范式。
区块链采取分布式数据存储、点对点传输、共识机制、加密算法等技术,具有去中心化、开放性、自治性、不可篡改性、匿名性等特点,能够有效地在不同节点之间建立信任、获取权益。
区块链的应用
区块链最早的应用是数字货币,比特币是最具有典型代表,目前1比特币的价格已经超过40000人民币,其他的还有litecoin、dogecoin、dashcoin等等。
目前,区块链应用最广的是金融领域,此外还在智能合约、证券交易、电子商务、物联网、社交通讯、文件存储、存在性证明、身份验证、股权众筹、版权保护等领域有广泛应用。
3什么是大数据
其实简单的来说,大数据就是通过分析和挖掘全量的非抽样的数据辅助决策。
大数据的特征
大数据是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。
大数据具有如下本质特征:
1根本目的是服务于决策,大数据能够帮助各类组织和个人大幅度提升决策能力,做出更好的决策和判断;
2量度大,大数据通常是指100T以上的数据量,这难以依靠传统的计算手段有效计算,而必须依靠新的计算手段和数据挖掘工具;
3频率高,大数据是用户参与与互动而产生的数据,根据用户的网络痕迹来及时地了解用户的相关数据,这种数据是按照天甚至小时来计的高频数据。而传统的数据频率都很低,很多数据是按照月甚至按照年份来计算的;
4速度快,大数据是实时性的数据,能够实时反应。例如,在百度搜索框输入一个关键词,能够瞬间呈现,而传统的数据收集方式则是严重滞后的;
5永远在线。在线是大数据的前提条件,从这个角度来说,大数据是永远在线的,能够随时被调用的。大数据通过分析各种网络终端上的用户痕迹,能够更好地分析用户的行为、情感、思想、爱好与需求,来更好地进行决策和分析。
大数据的三大关键点
首先,数据的可获得度。目前在国内,大数据的发展严重受制于政府信息的公开性不够,很多数据难以获得,导致难以实现真正的大数据挖掘和分析,这就要求政府及时开放更多的数据,以提高数据的可获得度。
其次,进行科学的模型建构。模型的科学性直接决定着数据分析的质量,这就要求有高超的建模水平,当然数据量越多也有助于模型的合理构建。
第三,利用专家对观点进行提炼。为决策提供依据的基于数据挖掘的独到、高质量的观点,高度依赖于高质量的数据解释,这就体现了行业专家的价值。
物联传媒提供
大数据在物联网运用中的作用大数据这一概念早已有之,只是在较长的一段时间里处于沉寂状态。近年来,随着人们意识的增强以及观念的更新,大数据又重回人们的视线,并逐渐成为一股革新浪潮。大数据又名巨量资料,其涉及的数据量规模巨大,以至于无法通过主流工具在短时间内实现撷取与管理。对于这一部分海量、高增长且多样化的信息资产,只有运用更强的洞察力、决策力以及流程优化能力才能发现隐藏在数据背后的规律与价值,而可穿戴设备以及汽车中传感器应用的盛行,标志着大数据应用已经开始延伸到物联网领域。
在物联网中,对大数据技术的应用提出了更高的要求:首先,物联网中的数据量更大。物联网的组成节点除了人和服务器之外,也包括物品、设备、传感网等,数据流源源不断的产生,其数量规模远远大于互联网。其次,物联网中的数据传输速率更高。由于物联网与真实物理世界直接关联,要求实时访问以及控制相应的节点和设备,需要高数据传输速率予以支持。此外,物联网中数据的海量性也必然要求更高的传输速率。再者,物联网中的数据更加多样化。物联网涉及广泛的应用范围,从智能家居、智慧交通、智慧医疗、智慧物流到安防监控等,无一不是物联网的应用范畴。同时,在不同领域、不同行业,也需要面对不同类型和不同格式的数据,这使得物联网中的数据更加多样化。
针对物联网对海量数据的处理与应用需求,万物云开发团队在现有数据立方(DataCube)的基础之上,打造了一个针对智能硬件与物联网应用的大数据服务平台。该平台包括一个硬件数据服务接口,一个平台数据服务逻辑层以及一套面向应用的编程接口。物联网开发团队只需关注硬件及应用,就可通过万物云轻松处理物联网上的大数据。具体而言,万物云拥有如下特性。
丰富多样的应用功能。首先,万物云提供清晰而简明的编程实例、接口文档以及丰富的案例样本代码,以帮助开发者快速开发跨平台物联网应用,并通过社区论坛、微信和微博等社交平台提供全方位的技术支持。同时,万物云平台支持>云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和 *** 作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极 *** 作PB级别的数据”,确实让人兴奋不能止。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)