边缘计算网关有哪些优点

边缘计算网关有哪些优点,第1张

1、延迟问题

延迟是指处理和分析捕获数据所需的时间。连接到互联网的设备必须在100毫秒内响应,有时甚至不到10毫秒。因此,计算过程必须尽可能本地化,以抵消远距离传输数据的固有延迟。
通过物联网中的边缘计算,计算将在源头附近完成,例如传感器,如果汽车上的传感器判断出将要发生碰撞,那么系统就必须具有足够的确定性,能够在一定的时间范围内部署安全气囊,如果在长距离传输数据方面有任何滞后,那就是根本不安全的。

2、带宽问题

运行软件和生成数据的大多数物联网设备需要链接到云以存储和进一步处理该数据。因此,需要大量的功率和带宽将IoT数据传输到云。

在物联网中使用边缘计算,组织可以减少互联网带宽的使用,因为可以在源附近处理大量数据。

例如,边缘计算相机可以通过分析警察仪表板的视频源来帮助执法机构减少带宽,相机摄像头可以实时生成大量的视频和音频记录,但只有在必要时才将相关数据发送到云端。

3、带宽成本问题

物联网应用程序生成大量相对低价值的时间序列数据。这意味着带宽成本,设备获得带宽的机会成本,存储和分析成本,以及云中这些低价值时间序列数据的计算成本。

有了边缘计算,这些数据就可以被捕获,如果有必要的话,在将数据发送到云或其他上游聚合点之前进行分析和汇总,这比通过WAN链路发送未经过滤的数据要便宜得多,后者通常非常昂贵。

4、传统系统连接问题

公司经常连接到物联网的传统系统具有非IP/以太网接口。因此,他们需要来自模拟或专有系统接口的物理转换,以便能够使用和分析数据。这只能在生成数据的原始设备旁边完成。

这是物联网中的边缘计算可以提供帮助的地方。边缘可以充当新旧之间的中介,为没有现代计算能力的传统资产添加智能功能。

5、物联网安全问题

尽管云服务提供商已经为终端客户的物联网产品开发了出色的安全性,但运营技术专业人员仍然担心他们的敏感数据一旦离开企业的墙壁就不会安全。

为了解决这个问题,可以在边缘添加更多智能来保护系统,使其更强大,可以抵御黑客攻击和入侵。因此,任何中断都将仅限于边缘计算设备和这些设备上的本地应用程序。

边缘计算在物联网中应用的领域非常广泛,特别适合具有低时延、高带宽、高可靠、海量连接、 异构汇聚和本地安全隐私保护等特殊业务要求的应用场景。为了打造更适合行业应用的物联网通讯终端产品,四信通信充分利用边缘计算技术,大力研发生产出了F-G200边缘计算网关,该系列产品可帮助用户快速接入高速互联网,实现安全可靠的数据传输。

边缘计算平台EdgeX Foundry介绍

EdgeX Foundry是一系列松耦合、开源的微服务集合,位于网络的边缘,可以与设备、传感器、执行器和其他物联网对象的物理世界进行交互。EdgeX Foundry 旨在创造一个互 *** 作性、即插即用、模块化的物联网边缘计算的生态系统。

从架构图可以看出:

南侧(SouthBound): 在物理领域内的所有物联网对象,以及与这些设备、传感器、执行器和其他物联网对象直接通信并从中收集数据的网络边缘,统称为“南侧”。

北侧(NorthBound): 将数据收集、存储、聚合、分析并转换为信息的云(或企业系统),以及与云通信的网络部分称为网络的“北侧”。

EdgeX可以根据需要和指示发送“北”、“南”或“横向”数据。

因此,EdgeX使数据可以向北移动到云,也可以横向移动到其他网关,或返回到设备、传感器和执行器。

EdgeX的重要服务层:

边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台。边缘计算的核心,是将计算任务从云计算中心,迁移到产生源数据的边缘设备上。

较之于传统的云计算,边缘计算在以下5大方面具有绝对性优势:

1 安全性要求

2 知识产权问题

3 交互延迟和d性

4 减少带宽成本

5 自治能力

云计算和边缘计算正在塑造物联网(IoT)的未来。这种组合为物联网网络中连接的设备带来了稳定性,并通过处理更接近源的数据来解决延迟问题。
云计算明显改变了数据处理的形式,特别是对于大数据。利用云的计算能力,物联网实现了跨越式发展,我们获得,存储和处理数据,而不必配置计算资源和管理。
物联网每年安装数十亿台智能设备,据估计,到2020年将安装超过200亿台智能设备。由于安装了大量设备并连接到物联网,因此处理的数据量一直在增加。我们正应对着处理和分析这些数据的挑战,特别是在需要近乎实时处理这些数据的情况下。仅云计算无法帮助处理如此庞大的数据集并实时提供响应。
据国际数据公司(IDC)称,边缘计算(Edge computing)是一个微型数据中心的网状网络,可在本地处理或存储关键数据,并将所有接收的数据推送到中央数据中心或云存储库。
简而言之,边缘计算可以处理和分析更靠近生成数据源的数据。
在边缘计算环境中安装和连接的智能设备能够处理关键任务数据并实时响应,而不是通过网络将所有数据发送到云并等待云响应。设备本身就像一个迷你数据中心,由于基本分析正在设备上进行,因此延迟几乎为零。利用这种新增功能,数据处理变得分散,网络流量大大减少。云可以在以后收集这些数据进行第二轮评估,处理和深入分析。

物联网平台为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑设备数据采集上云;向上提供云端API,指令数据通过API调用下发至设备端,实现远程控制。

物联网平台也提供了其他增值能力,如设备管理、规则引擎、数据分析、边缘计算等,为各类IoT场景和行业开发者赋能。

如下是共享单车基于物联网平台的解决方案。
物联网平台提供边缘计算能力,支持在离设备最近的位置构建边缘计算节点处理设备数据。

在断网或弱网情况下,边缘计算可缓存设备数据,网络恢复后,自动将数据同步至云端。

提供多种业务逻辑的开发和运行框架,包括场景联动、函数计算和流式计算,各框架均支持云端开发、动态部署。

边缘计算能力允许在最靠近设备的地方构建边缘计算节点,过滤清洗设备数据,并将处理后的数据上传至云平台。
物联网应用可广泛应用于:智能生活、智能工业、智能楼宇、环境保护、农业水利、能源监控等环境。计算平台主要涉及:

开发者使用设备接入SDK,将非标设备转换成标准物模型,就近接入网关,从而实现设备的管理和控制。

设备连接到网关后,网关可以实现设备数据的采集、流转、存储、分析和上报设备数据至云端,同时网关提供规则引擎、函数计算引擎,方便场景编排和业务扩展。

设备数据上传云端后,可以结合云功能,如大数据、AI学习等,通过标准API接口,实现更多功能和应用。

物联网 (IoT) 设备必须连接互联网。通过连接到互联网,设备就能相互协作,以及与后端服务协同工作。互联网的基础网络协议是 TCP/IP。MQTT(Message Queue Telemetry Transport,消息队列遥测传输) 是基于 TCP/IP 协议栈而构建的,已成为 IoT 通信的标准。

边缘计算指在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。
主要优点
看似“生僻”的边缘计算其实并不“边缘”,而且意义重大。边缘计算和云计算有些类似,都是处理大数据的计算运行方式。但不同的是,这一次,数据不用再传到遥远的云端,在边缘侧就能解决,更适合实时的数据分析和智能化处理,也更加高效而且安全。
如果说物联网的核心是让每个物体智能连接、运行,那么边缘计算就是通过数据分析处理,实现物与物之间传感、交互和控制。它是物联网从概念到应用的一把钥匙,更是制造业从“笨拙”变得“智慧”的重要途径。
工信部信息化和软件服务业司副司长安筱鹏在会上说,传统制造业向智能化升级的过程中,特别需要通过边缘计算技术,将车间里的生产设备智能连接,提高效率,创新模式。
当前,全球数字化革命正引领新一轮产业变革。物联网也被普遍认为是推动传统产业变革和全球经济发展的又一次浪潮。据统计,到2020年将有超过500亿的终端与设备互联。未来超过50%的数据需要在边缘侧分析、处理和储存。边缘计算应用广阔,机遇无限。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13366956.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-22
下一篇 2023-07-22

发表评论

登录后才能评论

评论列表(0条)

保存