1、合肥职业技术学院专业设置 序号 学校名称 层次 专业名称 1 合肥职业技术学院 专科 园艺技术 2 合肥职业技术学院 专科 园林技术 3 合肥职业技术学院 专科 环境工程技术 4 合肥职业技术学院 专科 储能材料技术 5 合肥职业技术学院 专科 材料工程技术 6 合肥职业技术学院 专科 建筑装饰工程技术 7 合肥职业技术学院 专科 园林工程技术 8 合肥职业技术学院 专科 建筑工程技术 9 合肥职业技术学院 专科 建筑消防技术 10 合肥职业技术学院 专科 工程造价 11 合肥职业技术学院 专科 建设工程管理 12 合肥职业技术学院 专科 机械设计与制造 13 合肥职业技术学院 专科 智能焊接技术 14 合肥职业技术学院 专科 模具设计与制造 15 合肥职业技术学院 专科 电机与电器技术 16 合肥职业技术学院 专科 机电一体化技术 17 合肥职业技术学院 专科 汽车制造与试验技术 18 合肥职业技术学院 专科 新能源汽车技术 19 合肥职业技术学院 专科 汽车电子技术 20 合肥职业技术学院 专科 食品智能加工技术 21 合肥职业技术学院 专科 食品质量与安全 22 合肥职业技术学院 专科 食品检验检测技术 23 合肥职业技术学院 专科 药品生产技术 24 合肥职业技术学院 专科 药品质量与安全 25 合肥职业技术学院 专科 药品经营与管理 26 合肥职业技术学院 专科 汽车技术服务与营销 27 合肥职业技术学院 专科 城市轨道交通工程技术 28 合肥职业技术学院 专科 城市轨道车辆应用技术 29 合肥职业技术学院 专科 城市轨道交通机电技术 30 合肥职业技术学院 专科 城市轨道交通通信信号技术 31 合肥职业技术学院 专科 城市轨道交通供配电技术 32 合肥职业技术学院 专科 城市轨道交通运营管理 33 合肥职业技术学院 专科 物联网应用技术 34 合肥职业技术学院 专科 汽车智能技术 35 合肥职业技术学院 专科 计算机网络技术 36 合肥职业技术学院 专科 软件技术 37 合肥职业技术学院 专科 大数据技术 38 合肥职业技术学院 专科 动漫制作技术 39 合肥职业技术学院 专科 电信服务与管理 40 合肥职业技术学院 专科 临床医学 41 合肥职业技术学院 专科 护理 42 合肥职业技术学院 专科 助产 43 合肥职业技术学院 专科 药学 44 合肥职业技术学院 专科 医学检验技术 45 合肥职业技术学院 专科 医学影像技术 46 合肥职业技术学院 专科 康复治疗技术 47 合肥职业技术学院 专科 预防医学 48 合肥职业技术学院 专科 金融科技应用 49 合肥职业技术学院 专科 大数据与会计 50 合肥职业技术学院 专科 大数据与审计 51 合肥职业技术学院 专科 会计信息管理 52 合肥职业技术学院 专科 市场营销 53 合肥职业技术学院 专科 电子商务 54 合肥职业技术学院 专科 商务数据分析与应用 55 合肥职业技术学院 专科 智能物流技术 56 合肥职业技术学院 专科 旅游管理 57 合肥职业技术学院 专科 酒店管理与数字化运营 58 合肥职业技术学院 专科 数字媒体艺术设计 59 合肥职业技术学院 专科 环境艺术设计 60 合肥职业技术学院 专科 广告艺术设计 61 合肥职业技术学院 专科 智慧健康养老服务与管理
2、合肥职业技术学院简介合肥职业技术学院(Hefei Technology College),位于安徽省合肥市,是合肥市属综合性高职院校,是省教育厅确立的安徽省首批16所地方技能型高水平大学之一,是国家“创新发展行动计划”优质专科高等职业院校建设单位。
2002年,由原巢湖卫生学校、巢湖农业学校(安徽省土地管理学校)、巢湖财政学校合并升格为巢湖职业技术学院。随后,安徽省汽车运输高级技工学校、安徽广播电视大学巢湖分校和巢湖商业干部学校先后并入。2012年4月,教育部批准巢湖职业技术学院更名为合肥职业技术学院。
对电大中专/中专/技校/职校报考还有疑问,您可以点击2023年电大中专招生咨询(原广播电视大学):>
一、简单回答您的问题:智慧消防的主要作用。
1、防止80%的火灾是由电气直接短路、过载、漏电等造成,智慧用电管理系统可以有效监测这些电气火灾因素(电流、电压、剩余电流、温度),将电气火灾隐患及时准确预警到监控平台,及时整改电路安全隐患,把用电安全隐患消除在萌芽阶段。
2、可视化集中管理:监管平台可以提供大数据平台,完成对各建筑的建筑智慧电气火灾的安装数量、隐患报警率、隐患排查及时率、区域电气安全综合系数的实时展示,集中监控所管辖各火灾报警主机运行状态和报警信息,让大数据应用为管理人员提供准确及时的决策及监管依据,为监管提供极大的便利。
二、智慧消防知识扩展:
一、智慧消防建设必要性
近年来,随着我国城镇化建设步伐的不断加快,智慧城市建设工作正在各地开展,“智慧消防物联网”作为智慧城市的一部分,在城市火灾风险隐患防控、强化责任担当、狠抓工作落实方面起到了不可替代的作用,牢固火灾防控网络,减少人民财产损失,整体提高城市安全保障水平。
为响应国家应急管理部门提出的智慧消防建设意见,运用物联网、大数据、云计算等技术手段探索建立防消结合工作新模式,研发出“智慧消防大数据监管云平台”,全力推动社会化防火工作的整体提升。
2020年4月1日国务院安全生产委员会印发《全国安全生产专项整治三年行动计划》,文件指出:各地区积极推广应用物联传感、温度传感、火灾烟雾监测、水压监测、电气火灾监控、视频监控等感知设备,加强消防安全智能化、信息化预警监测,实现消防数据物联感知、智能感知。2021年,地市以上城市全部建成消防物联网。2022年底前,分级建成城市消防大数据库,建成火灾监测预警预报平台,实现对火灾高风险场所、高风险区域的动态监测、风险评估、智能分析和精准治理。基层将消防工作有机融入基层综合治理体系,整合基层部门管理服务资源,综合运用社会活理“人、地、事、物”等关联数据信息,构建网络化、社会化、信息化的基层消防管理体系。
二、建筑消防、电气安全现状分析
21建筑用电存在的安全隐患
随着科技创新力度加大,信息技术已经成为提升银行核心竞争力的重要手段。在此趋势下,金融业采用的电子设备种类越来越多,对电子设备的使用强度大大增强,但电气系统设计、建设、运营、使用的过程中往往忽视安全用电和规范用电,主要表现在以下几个方面:
1基础管理落后
目前各种建筑的用电系统还处于无网络化、无智能化的单机分散独立运行的状态,主要还是采取传统的保护措施,以空开、保险丝、漏保、定时器等方式为主流,无法实现对前端强电系统进行远程实时监测和管理。
2设计应用不统一。
规划设计与实际应用不统一,导致线路数铺设不规范,部分地线缺失等隐患导致设备与人身安全无法得到保障。
3运维管理不规范
运营过程中缺乏现代化技术手段监管,难以防止不合理应用现象的产生。保护与负载不匹配、负载随意添加和不规范的分路引线、常年失修、鼠患、电器使用不规范,均是引起火灾的重大。
4设备管理难度大
设备使用中主要有安装随意、摆放无序、布线杂乱、接线零乱等现象;同时,非24小时设备24小时开机运行,24小时运行设备绝缘老化等问题均存在火灾安全隐患。
5电能损耗浪费、存极大安全隐患
很多筑的70%的用电属于营业性用电,比如照明、电脑、空调、饮水机、LED屏等设备,下班后需拉闸断电;但在实际执行中仍会存在不执行的现象,造成大量的能源浪费,存在极大的安全消防隐患。
综上,本区域搭建智慧电气火灾云监控系统十分必要!
22引起电气火灾的成因
(1)漏电火灾
当漏电发生时,漏泄的电流在流入大地途中,如遇电阻较大的部位时,会产生局部高温,致使附近的可燃物着火,从而引起火灾。此外,在漏电点产生的漏电火花,同样也会引起火灾。
(2)短路火灾
由于短路时电阻突然减少,电流突然增大,其瞬间的发热量也很大,大大超过了线路正常工作时的发热量,并在短路点易产生强烈的火花和电弧,不仅能使绝缘层迅速燃烧,而且能使金属熔化,引起附近的易燃可燃物燃烧,造成火灾。
(3)过负荷火灾
当导线过负荷时,加快了导线绝缘层老化变质。当严重过负荷时,导线的温度会不断升高,甚至会引起导线的绝缘发生燃烧,并能引燃导线附近的可燃物,从而造成火灾。
(4)接触电阻过大火灾
当有电流通过接头时会发热,这是正常现象。如果接头处理良好,接触电阻不大,则接头点的发热就很少,可以保持正常温度。如果接头中有杂质,连接不牢靠或其他原因使接头接触不良,造成接触部位的局部电阻过大,当电流通过接头时,就会在此处产生大量的热,形成高温,这种现象就是接触电阻过大。
(5)巡检不到位引起火灾
现在建筑的供电系统,依靠人工巡检的方式,来排查发热故障点,但是,在恶劣的天气条件下,在封闭性比较强的配电箱柜中,很难实现温度的检测。
因此,监控配电系统中的泄漏电流情况和温度非正常升高情况及电压电流变化情况在防范电气火灾的发生上起着非常重要的作用。
三、解决方案
31方案简介
基于以上原因,智慧消防监管系统基于大数据、云计算、物联网等技术对电气引发火灾的主要因素(导线温度、电流和漏电电流)进行不间断的数据跟踪与统计分析,实时发现电气线路和用电设备存在的安全隐患,并即时向银行管理人员发送预警信息,协助工作人员及时排查安全隐患,同时采集消防主机报警信息同时上传监控平台,能够在第一时间全面掌握整个银行系统用电异常报警情况,指导银行开展隐患治理,达到消除潜在安全隐患的目的。
32设计思路
智慧用电系统:通过对银行的“低压配电室+楼层配电箱+终端配电盒(pz30)”电气设备的智能化升级--加装智能监测终端,通过无线通信模块把数据实时上传到后台进行监测,实现对电气设备的剩余电流、温度、电流、电压等状态数据采集和上传,形成对整个银行的管理终端数据应用,供银行管理方通过监管平台时时查看所管辖区域用电线路的安全运行状态。
依据《电气火灾监控系统设计、施工及验收规范》的要求,本系统综合实现所有用电回路的剩余电流、线缆接点温度、电压、电流、能耗统计等数据的实时采集与上传,通过PC端、手机APP等监控终端可以实时掌控用电安全情况,真正实现电气火灾故障隐患前期预警的一体化实时监测。所有数据经云平台综合诊断分析,及时发现所监测用电线路是否存在漏电、过载、短路、过压、接触不良及温升异常等故障隐患,全面掌握用电回路状态及运行趋势,有效避免电气火灾事故的发生,为建筑实现电气火灾的智慧化监控管理,提供整体解决方案及全新服务模式。
火灾自动报警监测联网系统:在各建筑的火灾自动报警主机加装用户信息传输装置,通过用户传输信息装置把火灾信息实时上传到监控平台,实时采集联网火灾自动报警系统前端感知设备的报警信息和运行状态信息,提前发现消防设施存在的各种故障隐患,督促相关单位整改,降低火灾风险。
IDC全称为Internet Data Center,互联网数据中心。只提供场地和机柜的数据中心,一般称为DC(Data Center),而同时提供带宽服务的,一般称IDC(互联网数据中心,Internet Data Center),两者有时不作严格区分。IDC是指一种拥有完善的设备(包括高速互联网接入带宽、高性能局域网络、安全可靠的机房环境等)、专业化的管理、完善的应用级服务的服务平台。在IDC平台基础上,IDC服务商为企业和ISP、ICP、ASP等客户提供互联网基础平台服务以及各种增值服务。
全球IDC行业投资现状:投资规模呈快速增长趋势
云计算、大数据、物联网、人工智能等新一代信息技术快速发展,数据呈现爆炸式增长,互联网数据中心建设成为大势所趋。2020年在疫情的影响下,全球数据中心IT投资规模下降,但世界主要国家和企业纷纷开启数字化转型之路,在这一热潮推动下,全球数据中心IT投资正在逐步回复,呈现快速增长趋势。根据Gartner的数据显示,2021年全球数据中心IT投资规模达到2073亿美元,同比增长67%,预计2022年投资规模将达2186亿美元。
全球IDC行业建设现状:向着大型化、集约化发展
2010年以来全球数据中心平稳增长,从2017年开始,伴随着大型化、集约化的发展,全球数据中心数量开始缩减。据Gartner统计,截至2020年数据中心共计422万个,初步核算2021年全球数据中心数量进一步下降,在41万个左右。
以超大规模运营商的大型数据中心数量角度来看,随着行业集中度的逐步提升,全球超大型数据中心数量总体增长。据Synergy Research Group的最新数据,截至2021年超大规模提供商运营的大型数据中心总数增加到700个左右,较2020年同比增长1725%。根据Synergy Research Group最新预测,凭借目前已知的314个未来新超大规模数据中心的规划,运营数据中心的安装基数将在三年内突破1000个大关,并在此后继续快速增长。
注:2021年数据截止2021Q3。
全球IDC行业市场规模体量:数据量的爆发增长带动市场规模发展
随着物联网、电子政务、智慧城市等领域的发展以及云计算的发展也将进一步推动IDC领域的发展。依据IDC发布的《数据时代2025》报告,随着5G、物联网的发展,2010-2021年数据呈现爆发式增长状态,2020年全球数据量为60ZB,初步统计2021年达到70ZB;预计2025年全球数据量将达到175ZB。
数据量的爆发式增长使得市场对IDC行业愈发青睐,据中国信通院的数据显示,2017-2021年间,全球IDC市场规模均保持正增长,且年均增速在10%左右。2021年全球IDC行业市场规模为6793亿美元,同比增长99%。
全球IDC行业市场前景预测:即将迎来其新一轮的发展机遇
可以预见,在未来几年,IDC产业将迎来其新一轮的发展机遇。此外,随着网络系统日趋复杂,伴随网络的带宽逐步提高,用于网络维护的成本投资逐步增加,网络管理难度也在日益加大,在这种情况下,以资源外包的网络服务方式逐渐受到企业重视,并取得长足的发展。另外,各国政府加大了对电信宽带的投资力度,促进电信和互联网的融合。根据中国信通院预测,2022年全球ID行业市场收入将达7465亿美元,增速总体保持平稳,2022-2027年年复合增长率在10%左右,到2027年行业规模将超过1200亿美元。
—— 更多本行业研究分析详见前瞻产业研究院《中国IDC(互联网数据中心)市场前瞻与投资战略规划分析报告》
经国网多年的合作开发,宽带(中频)电力线载波通信技术规模化应用的时机终于来临!中国现代电网量测技术平台
张春晖
2018年6月21日
1)IEEE19011国际标准
网上报道:中国电科院发布”IEEE19011国际标准”
— 2018年5月22日,由中国电科院、国网信通产业集团等企业联合制订的IEEE19011《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准》正式发布实施。
—该标准是以国网Q/GDW 11612 《低压电力线宽带载波通信互联互通技术规范》为基础,大量使用创新技术,提出以OFDM、双二元Turbo编码、时频分集拷贝为核心的物理层通信技术规范,以及以信道时序优化、树形组网、多台区网络协调为代表的数据链路层技术规范。
该标准的发布,填补了中频电力线载波通信应用在智能电网领域国际标准的空白,提升我国在物联网领域的国际影响力和话语权。
— IEEE19011标准通过构建高带宽、高可靠、低时延、低成本的电力线通信网络,支持远程自动抄表、配电台区监测等多种应用场景,实现以电力线载波通信为基础的物联网技术在能源互联网中的有效应用。
该标准将促进电力线载波通信芯片、通信模组、智能终端全产业的发展。
2)国网,宽带(中频)电力线载波通信技术合作开发进程
国网为何重视宽带(中频)电力线载波通信技术的开发
国网的用电信息采集系统建设,从2010年开始,2017年基本完成,用电信息采集43亿户,覆盖率99%,用于用电信息采集设备及用户工程投资巨额,约510亿元。其中,70%的本地通信方式采用窄带(低速)电力线载波通信技术。经过多年的运行,窄带(低速)载波通信方式的通信速率慢,自动采集成功率低,有的居民小区的单相电表,24h都抄不到表,成为本地通信的技术瓶颈,一时难以解决。由此,国网利用配电网户户通电电力线的资源优势,将宽带(中频)电力线载波通信实用化应用,列为通信新技术重点开发课题。
根据中国电科院专家提出的配电、用电管理通信流量的预测:宽带(中频)载波通信速率需满足下列用电信息采集的要求:
· AMR/AMI的通信速率:12/20 k bps
·负荷管理10 k bps
·扩大到配电业务,配电自动化、报警管理、DG均为10 k bps;
·配电视频监控要求1 M bps;配电新提出的其它视频通信要求。
— 2012年7月,国网”新一代智能电力线载波通信关键技术研究”项目启动。该智能PLC是具有跨频带(150 k Hz---10 M Hz)、频率自认知、自适应、自组网、协调通信功能的载波通信技术。
该项目由中国电科院牵头,国网通信公司、南瑞集团参与。
2014年11月,该项目通过验收。其智能PLC系统在绍兴、长春电网的中、低压电力线路上开展了实际测试与验证。
— 2014年7月,在本文作者组织召开的《进口高端电能全性能研究》课题(长沙:威胜)技术交流会议上,华为海思公司介绍了自主设计的Hi3911型宽带(中频)载波芯片,频段:2---12MHz,通信速率200k---14M bps。
由此估计:华为海思公司的中频载波芯片推出时间还要更喜欢早一点。
— 2014年10月,国网召开低压电力线宽带载波通信技术标准研讨会,提出宽带载波通信单元技术规范、检验规范、通信协议(初稿)。
— 2014年11月,在本文作者组织召开的电力线载波通信新标准、新产品(青岛:东软)技术交流会议上,重点交流国际/国内宽带与OFDM窄带载波通信新技术。
— 2015年,据了解,华为海思公司将(中频载波芯片)物理层及通信协议在国网宽带载波通信技术企业标准中进行共享。各宽带载波芯片厂家在芯片物理层统一的前提下,自主开发宽带载波产品。
— 2016年,在本文作者组织召开的当前电表行业发展热点问题(重庆华立)讨论会上,重庆市电科院介绍了在大型公变台区(约700户)进行现场宽带载波通信互联互通测试结果。
— 2017年,江苏省电科院完成宽带载波模块互联互通测试,验证宽带载波模块在架空线路、预埋电缆、城市及农村等现场复杂运行工况下的互联互通情况。
— 2017年,重庆邮电大学、重庆市电科院《基于System Generator的宽带电力线脉冲噪声实现方法》提出:实现基于FPGA的Class A 噪声发生器,将有利于宽带PLC产品抗噪声性能评估测试。
— 2017年,国网发布:《低压电力线宽带载波通信互联互通技术规范(Q/GDW 11612---2016)》
据了解,该标准分为6个部分:
第1部分:总则
第2部分:技术要求
第3部分:检验方法
第4部分:物理层及通信协议
第5部分:链路层及通信协议
第6部分:应用层技术要求
— 2018年5月,中国电科院发布:《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准(IEEE19011)》
3)青岛东软公司:推出符合IEEE19011国际标准的宽带(中频)载波通信芯片,并获得国际通行证
网上报道:”IEEE发布载波新标准,东软载波芯片获国际通行证”
—东软推出新的载波(中频)芯片的型号:
Eastsoft SSC1667。现在,已有至少100万颗芯片在网使用,并不断深化应用,拥有超级电容停电上报台区自动识别等功能。
—东软SSC1667型宽带(中频)载波通信芯片的设计性能
· 40nm Flash工艺,SOC芯片集成度高,Flash内置,外围成本低
· OFDM正交频分复用调制技术
·通信速率6MHz
·通信频带07MHz---12MHz
·功耗更低:静态功耗07W/动态1W
·支持新的/老的国网宽带互联互通标准,支持频段切换功能
· 4频段、6种模式,具体支持的标准和频段:(略)。
4)点评
—我国在电力线载波通信技术国际标准制订方面实现零的突破
在国际上,由中国电科院等单位联合制订的《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准(IEEE19011)》,填补了中频电力线载波通信应用在智能电网领域国际标准的空白。
经查证:
·国际上,宽带(高频:2MHz及以上)电力线载波通信标准的制订:先期研究的重点领域是智能家居网络,后来面向家庭数字多媒体、视频、音频、数据、能源智能化控制等通信的需求。这方面,Home Plug(家居即插)联盟提出的宽带电力线载波通信技术标准较早、面广,其中的部分宽带载波通信标准,已经转换成IEEE国际标准:
从2001年的Home Plug 10标准,数据速率最高达14M bps,主要定位于家庭网络应用,也有用于低压宽带接入;2004年的Home Plug 10 ---Turbo标准,提升数据速率,最高数据速率85M bps,;2005年的Home Plug AV标准,频段:18---25MHz,最高数据速率200M bps,用于传输视频、音频、数据;2006年的Home Plug Green PHY标准,是为家庭和建筑物中嵌入式智慧能源和自动化应用而设计,它与IEEE1901/Home Plug AV标准的电力线网络协议互 *** 作,并具有将数据速率由200M bps降低为低速率(注:10M bps)、低功耗(注:功耗降低80%)、低成本和宽广家庭覆盖能力等特性。
·国际上的窄带(低频:500kHz及以下)OFDM电力线载波通信标准的制订:
2009年,MAXIM公司发布G3标准
2011年,PRIME联盟成立,发布G3---PLC标准;ITU(国际电信联盟)的G9955兼容G3---PLC物理层;IEEE P 19012兼容G3---PLC物理层
2012年,G3---PLC更新,由ITUG9903发布;10月发布更新版本
2013年,ITUG9903发布更新版本;IEEE19012投票通过成为正式版本
2014年,ITU G9903发布再更新版本。
这些窄带通信标准,使用OFDM的低频窄带载波通信技术,以较高的传输速率及频段具有d性等优势而快速兴起,主要用于自动抄表管理、智能家居网络,频段:10k---500k Hz ,数据传输速率20k---150k bps。
·以上情况说明:
a1 国际上,长期以来,适用于智能电网用电信息采集的中频(150k---12MHz)电力线载波通信方式,一直未推出国际标准。
a2 国内,自2009年国网提出开展电力用户用电信息采集系统建设之后,对适用于智能电网应用的中频(低于12MHz)电力线载波通信技术进行多方位的合作研究。
IEEE19011国际标准的提出,是基于国内通过几年的宽带(中频)电力线载波通信的中频载波芯片开发、现场宽带载波通信干扰性能测试、宽带载波通信互联互联讨论、宽带载波通信标准制订等多方位的合作创新、系统研究成果。
—从应用的视角,中频(低于12MHz)电力线载波通信有哪些技术难点与争议
国际上,迟迟未能推出适用于智能电网应用的中频(低于12MHz)电力线载波通信国际标准,估计主要有应用技术难点与争议。
经综合2014年青岛电力线载波通信新标准/新产品技术交流会议、2016年重庆电表行业发展热点问题讨论会议的情况,本文作者提出中频电力线载波通信应用技术开发的3个难点与争议问题:
其一,中频电力线载波通信双向高频干扰。网上报道:2013年6月,ITU---R(国际电信联盟无线电通信部门)发布《电力线通信系统对工作在80MHz以下的无线电通信系统的影响(ITU---R SM2158---3报告)》,对电力线载波通信方式提出质疑。
注:SM系列,频谱管理。
(说明:目前尚未看到国内有关部门对ITU--R SM2158---3报告的评论)
其二,配网预埋电缆、无功补偿装置对中频电力线载波通信影响的严重程度与改进措施的合理性评估。经现场实测,有时将集中器布置在
无功补偿装置之前(电源侧),自动抄表成功率极低甚至抄不到表。
其三,宽带载波通信互联互通问题。据了解,在国内,各宽带载波芯片厂家的中频载波芯片物理层及通信协议已经统一,网络的路径选择和中继功能还是各不相同,在现场实际的组网和抄表时,互联互通的效果并不理想。
针对以上难点与争议问题,据了解,国网计量部门统一组织了现场测试分析,提出一些改进措施。但是从期刊、网上很少见到这方面的报道。
这次,IEEE19011国际标准提出中频(低于12MHz)电力线载波通信网络的物理层、数据链路层技术规范,其大量使用的创新技术,提高了通信信号(位、帧)的收发质量和数据传输性能。据了解,随后国内有意向继续合作开发中频载波通信网络的网络层及其它层级的技术规范,期望在组网技术、路由算法、数据传输、互联互通等深层次通信技术进行开发统一,实现大幅度提升用电信息采集速率、自动采集成功率,化解中频载波通信质量引发的应用难题。
同时,本文作者提出尚需合作研究制订另一个重要标准:中频电力线载波通信信道监测、管理技术规范。该技术规范制订的建议,在本文第5)部分叙述。
中频电力线载波通信的高质量,只有从中频载波通信网络技术性能开发与信道监测管理两个方面措施相结合,才能较好地化解中频电力线载波通信应用的3个难题。
—载波模块价位。与窄带(低速)载波模块相比,目前的中频载波模块价位还高,将影响其大规模推广应用。但是,可以预期,随着中频载波模块应用量不断增长,其价位可以降到合理水准。
—拓展载波模块更新资金渠道
2010---2017年,国网用电信息采集设备的招标量:集中器约464万台,采集器约5115万台。如集中器、采集器的窄带载波模块70%,更新为中频载波模块,按目前的中频载波模块价位估计,集中器的新模块投资65亿元,采集器的新模块投资25亿元,单相载波表的新模块(按国网供电服务区457亿户的15%估算)投资34亿元。以上3项合计,国网采用中频载波模块需投资655亿元。按传统电子式电表8年轮换周期,每年需载波模块更新资金82亿元。
2017年底,国网用电信息采集系统建设基本完成。现在要申请进行用电信息采集载波模块的更新资金,化解本地通信技术瓶颈,这条资金渠道是否可以走通,还难以预料。国网,当前投资的重点还是特高压工程与推进配电网智能化建设。
目前,居民用电低压电网的主动故障报警与抢修,电能质量监测与控制,配电网与用户之间实用互动功能开发,是国网推进智能配电网建设的短板。由此,通过各级电网配电管理部门提出要求:拓展用电信息采集系统配电用新功能,申请中频载波模块购置资金,则是另一条合理渠道。
5)国内,中频电力线载波通信信道监测、管理技术规范制订的建议
国际上,EN50065:《3kHz至1485kHz频段的低压电气装置上的信号传输》:
第1部分: 一般要求、频带和电磁骚扰
第2---1部分: 95kHz至1485kHz频段用于住宅、商业和轻工业环境下工作的交流电源通信设备与系统的抗扰度要求
第2---2部分: 95kHz至1485kHz频段用于工业环境下工作的交流电源通信设备与系统的抗扰度要求
第2---3部分: 3kHz至95kHz频段用于电力提供商和分销商工作的交流电源通信设备与系统的抗扰度要求
第4---1部分: 低压去藕滤波器 --- 通用规范
第4---2部分: 低压去藕滤波器 --- 安全要求
第4---3部分: 低压去藕滤波器 --- 输入滤波器
第4---4部分: 低压去藕滤波器 --- 阻抗滤波器
第4---5部分: 低压去藕滤波器 --- 分段滤波器
第4---6部分:低压去藕滤波器 --- 相位藕合器
第7部分: 设备阻抗
国内:中频电力线载波通信信道监测、管理技术规范的制订,可参考EN60065系列标准,结合中频电力线载波通信的特征,需要涵盖中频频带和双向电磁骚扰限值;中频载波信号衰减及信噪比测量,集中器选址勘测;双向高频干扰监测;
各类应用环境的抗传导、幅射干扰要求;预埋电缆、无功补偿设备对中频载波通信影响测试及处理方案;同频干扰测试及改进方法;各类去藕滤波器;设备阻抗;双向通信与网关技术规范;其它要求。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)