物联网中如何使用大数据

物联网中如何使用大数据,第1张

物联网中如何使用大数据
在瞬息万变的世界中,组织很难赶上不断涌现的新概念。但人们需要区分哪些技术和概念是有用的,哪些只是一种炒作。在数据分析领域,正是大数据引发了这个时代的质疑。而如今,当这个概念日益清晰时,一个新的应用浪潮即将到来:人们需要了解在物联网中如何使用大数据。

关于什么是大数据及其可带来的价值的热烈讨论已经开始消退。然而,当专家们开始大量使用大数据和物联网的技术组合时,人们又再一次试图定义物联网与大数据连接的方式。
物联网与大数据的接触点
简而言之,物联网是连接到互联网的设备网络。这些设备具有内置的传感器,可以生成数据并对外发送,从而可以相互通信,并与分析系统进行通信。
即使对物联网设备仍然很陌生,这个概念已经在人们的生活中找到了方向。设想一个智能家庭,它可以通过调节供暖和空调系统的运行模式来调节温度,可以开启和关闭照明系统,可以发出有关漏水或气体泄漏或外人入侵的信号。最重要的是,智能家居可以在没有户主参与的情况下做到这一点。
物联网业务的一个典型例子是机器监控,使用安装在不同机器部件上的多个传感器。这些传感器将有关温度、振动、压力、润滑等读数发送给分析系统,分析系统对其进行处理并识别一些隐藏的模式和相关性。如果系统识别出读数与某种故障模式相匹配,则会向维护团队发送即时警报。
以下将回答物联网如何与大数据相交的棘手问题。当一些技术正在炒作时,物联网可能是其中之一。实际上,物联网数据是大数据的类型之一,这使得大数据技术堆栈在所有阶段处理物联网数据都是一个很好的(但不是唯一的)选项。对于数据摄取,企业可以使用Apache Kafka,因为该技术支持数据流。Apache Hadoop生态系统是数据存储和处理历史数据的理想选择,而Apache Spark则非常适合近实时数据处理。
大数据使用案例中的物联网数据规则
而人们开始了解制造商所提供的用例。同时,也可以在其他行业了解物联网数据,了解物联网大数据用例。
医疗保健:在医疗保健领域,配戴移动应用技术的可穿戴传感器设备可以实现远程健康监测。该方法的工作原理如下:传感器监测特定患者的状态(心跳、体温、血压、呼吸率等),并将这些数据实时传送到云端,然后传送到应用程序。分析系统不断搜索所有患者物联网数据中的隐藏趋势,并试图找出可能引发并发症的模式。如果物联网的大数据分析显示某些令人担忧的症状,系统会立即向患者和医生发送警报。
零售:知名零售商亚马逊公司最近推出了一个新概念 - Amazon Go。这是一家没有收银员的商店,顾客不必排队等待购物。要进入商店只用扫描他们的智能手机即可。事实上,在这里采用的是物联网和大数据分析技术:商店里遍布传感器和摄像头,顾客在商店中购物,摄像头能够区分其中的每一个人,并且跟踪他们放入购物车或返回货架的所有产品。重量传感器提供了一个额外的控制点:他们可以认识到特定的产品已经不在货架。当顾客完成购物时,他们选择的所有产品都显示在真实和虚拟的篮子中,顾客可以离开商店,系统将在稍后收费。
毫无疑问,Amazon Go是一个有远见的概念。然而,零售业表现出更多脚踏实地的想法,例如智能物流技术,可以跟踪和优化路线,并识别每位卡车司机的行为模式。零售商还使用信标激活访问者的应用程序,并在访问者进入商店并通过信标时,推出相关产品优惠和促销活动。访客会因此感到满意,因为他们收到参加促销活动提供的个性化优惠。同时,信标对商店员工也有帮助,因为它们可以识别需要高质量服务的具有价值的客户。
银行业:银行业也从物联网中受益。银行正在努力获取客户全方位的视角,并提供无缝的客户体验。虽然这一切始于智能手机的积极参与,但物联网进一步扩展至可穿戴设备。例如,美国银行与FitPay公司合作进一步推动可穿戴支付技术。通过这种合作,持卡人将能够直接从他们的智能手表和其他可穿戴设备付款。银行将能够识别客户的行为和偏好。
语结
尽管围绕物联网进行了更多的炒作,但它只是大数据源其中之一。毫无疑问,这是一个有价值的领域,而且正在不断发展。如果企业已经实施了一些大数据解决方案,也许已经处理物联网数据,如果企业正计划采用大数据方案,希望以上描述的用例可以激发一些伟大的想法。

物联网在物流领域的应用介绍如下:

一是产品的智能可追溯网络系统:在医药、农产品、食品、烟草等行业领域,产品追溯系统发挥着货物追踪、识别、查询、信息采集与管理等方面的巨大作用,基于物联网技术的可追溯系统为保障产品的质量与安全提供了保障。

二是物流过程的可视化智能管理网络系统:基于GPS卫星导航定位技术、RFID技术、传感技术等多种技术,在物流过程中实时实现对车辆定位、运输物品监控、在线调度与配送可视化与管理的系统。目前,物流作业的透明化、可视化管理已经初步实现,全网络化与智能化的可视管理网络还有待发展。

三是智能化的企业物流配送中心:基于传感器、RFID等物联网技术建立物流作业的智能控制、自动化 *** 作的网络,实现物流配送中心的全自动化,实现物流与生产联动,并与商流、信息流、资金流全面协同。

四是企业的智慧供应链:基于物联网技术升级智慧物流和智慧供应链的后勤保障网络系统,满足电商快速发展及智能制造等环境下产生的大量个性化需求与订单,帮助企业准确预测客户需求,实现整个供应链的智慧化。

物联网应用工程师的人才群体,主体应该包括IT和OT工程师。

从事方向大概有:智慧交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域而具体

工作岗位有:硬件设计师、嵌入式固件开发人员、无线通讯专家 、后端开发人员 、前端开发人员 、应用开发人员 、自动化与系统集成工程师 、数据科学家等。

硬件设计师:大多数物联网项目都涉及某种形式的定制硬件设计。硬件的复杂度因项目而异。在某些情况下,使用硬件模块和参考设计,基础知识和电气工程知识就足够了。而有些更复杂的项目则需要更多的经验和专业知识。常见的技术有印刷电路板(PCB)设计、无线电频率与天线设计、时钟,信号路由相关的经验、低功耗设计和功耗优化等

嵌入式固件开发人员:让硬件发挥作用,你就需要嵌入式开发人员。他们是从事最底层、最接近裸机硬件的软件开发人员。这样的软件称为固件(介于软件和硬件之间的固件)。一般这些开发人员的背景结合了电气工程、计算机体系结构和软件开发。嵌入式开发人员的工作需要与最终硬件的原型版本打交道,因此通常他们的办公桌看起来都很凌乱。 常见的技术有编程语言(C、汇编语言、C++)、实时 *** 作系统(RTOS)经验(FreeRTOS、Contiki、Zephyr)、嵌入式Linux、源代码版本控制、物理和信息安全等

无线通讯专家:大多数物联网项目都是无线的,但无线技术都很难,因为无线集物理与软件的双重复杂度于一身。通常无线通信专家都来自无线通信、网络协议和软件开发。对于大型物联网系统来说,拥有无线通信的专长才能适当地确定网络与通信模式。而消费级物联网系统则需要无线通信专长来确保通过蓝牙顺利地将设备连接到用户的智能手机。 常见的技术有网络模拟、无线网格网络、对无线传播技术的掌握、对功耗的掌握、协议(TCP/IP、IPv4、IPv6、RPL、TLS、WiFi、蓝牙、6lowpan、ZigBee、LoRA、MQTT、CoAP)

后端开发人员:在物联网系统中,后端需要处理数据库和应用程序逻辑。通常,后端都部署在云主机中,并负责存储来自物联网设备的数据、对用户进行身份验证、为前端以及与其他系统的集成提供API。 常见的技术有编程语言(JavaScript、Go、Python、Ruby)、数据库(MySQL、MongoDB、Redis)、开发运维经验、云平台(亚马逊的AWS、Heroku、微软的Azure)

前端开发人员:大多数物联网项目都有网页形式的前端。用户可以通过这类网页与系统交互。因此,这些网页需要做到易于使用、安全、可在最常见的Web浏览器中运行并保持最新状态。这些前端是用HTML开发的,而且通常都会采用某些现有的JavaScript前端框架。前端开发人员需要通过大量输出到网页上的文本来创建视觉体验。 常见的技术有UI/UX设计、用户访谈与人机交互的经验、HTML、CSS、Javascript、Web开发框架(Vuejs、React、Bootstrap)

应用开发人员:许多面向用户的物联网项目都需要使用移动应用作为用户界面。随着项目的推进,移动应用体验的重要性越来越突出。通常,我们需要开发和维护两个版本:iOS和Android。有时也可以开发混合原生应用(通常用HTML开发)。大多数应用开发人员都清楚原生与混合框架的优缺点。 常见的技术有Android、iOS开发原生/混合框架(Phonegap/Cordova、Ionic、Angular、React、Vue)、编程语言(Java、Swift、Objective C、JavaScript)

自动化与系统集成工程师:许多物联网项目都需要与现有软件集成。软件集成是一项经常被低估的任务,我们常常需要花费大量精力,运用一套特定的技术才能取得成功。此外,一旦软件集成开始,你就必须确保集成保持正常运行。这时我们就需要采用自动测试。系统集成和自动化工程师需要拥有大量实践经验和勇气,因为这是一项艰巨的工作。 常见的技术有自动测试框架(Jenkins、Mocha、Travis)、REST API、编程语言(Javascript、Java、Python、Bash)

数据科学家:物联网项目都需要围绕数据展开,而且你需要充分利用这些数据。在项目的早期阶段,这部分的工作可能很简单,只需将关键绩效指标放入Excel工作表中进行比较即可。但是随着项目的发展,你需要针对数据展开更深入的分析。这时就需要数据科学家的帮忙。数据科学家可以通过复杂的数据,寻找模式以及可付诸行动的信息,而这才是数据的最终价值。 常见的技术有统计、人工智能、机器学习、数据挖掘、编程语言(Matlab、R、Python)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13505835.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-21
下一篇 2023-08-21

发表评论

登录后才能评论

评论列表(0条)

保存