随着技术的快速发展,发光二极管(Light-EmitTIng Diode,LED)和太阳能光伏电池的性能得到显著提高,这进而有助于提升最终应用的性能。对于同时采用这两种技术的应用(如太阳能照明应用),这两大核心技术的进步将大大增强改善最终应用性能的潜力。此时,由于太阳能电池效率更高,可将更多的太阳能转化为电能,因此可减小所需太阳能电池的面积,促使高效LED的夜间照明时间更长,灯光也更明亮。不过,太阳能照明解决方案制造商面临的挑战将是如何能够快速且经济高效地利用技术进步的成果。最大程度发挥系统性能的其中一个办法是利用能量转换策略。借助坚实的能量转换策略,用户能够快速开发与部署充分利用最新技术的解决方案。在本文中,我们将检视组件,开发系统,并介绍一种分析系统特性的高级方法。
背景
太阳能照明的示例不胜枚举。无论是在电网不稳定的地区使用太阳能台灯作为夜间阅读的照明灯,还是对公共街道照明进行全面部署,对太阳/LED照明组合系统的需求都具有多样性、接受度高及全球化的特点。唯一不同之处仅在于最终应用的需求规模(阅读与一般照明的要求截然不同)。
所有此类系统的核心组件均包括:i) 太阳能电池;ii) 电池;iii) LED。如果采用更广义的描述,这些组件分别为:太阳能采集器(太阳能电池)、储能装置(电池)以及耗能装置(LED)。虽然这并不十分准确,但有助于突出分析的灵活性。图1a给出了最基本的系统配置。
图1:两种系统配置
不过,为使这种方案生效,每个组件的特性必须彼此兼容。对于本例而言,这意味着太阳能电池的输出电压/电流特性必须与电池的充电曲线匹配,电池的放电曲线必须满足LED的驱动要求。我们很快发现,图1(a)中的配置不能满足上述要求。
组件概述
回顾一下每个组件的性能特性,如图2(a到d)所示的伏安特性,我们发现,尽管可以在有限的配置集中使这些组件的特性相互接近,但几乎无法保证能达到合理的性能水平。我们很快发现,太阳能电池的电压(单片电池)最高为1V左右,而NiMH电池的工作电压介于0.9V与1.4V之间,而且虽然LED的正向电压通常高于3V,但需要恒流源。此外,NiMH电池为延长使用寿命,还有一些特殊的充电要求。
虽然可以开发相应系统直接连接所有组件,但应清楚,这种配置存在很大的局限性,并且会对系统整体效率与稳定性产生不利影响。
图2:组件伏安特性以及驱动要求
要打破这些限制,我们可以看一下图1(b)所示的备选系统图。此系统配置在三大核心组件之间分别添加了电力电子接口,可大幅提高系统的灵活性,并且可以优化系统的整体性能。在此配置中,单片机并非必不可少。可以采用独立的电池充电器集成电路(IC)来满足NiMH充电曲线的要求,与此类似,可以采用LED驱动器IC将电池电压转换为恒流源。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)