热电偶输出进行数字转换的电路
图1提供了一个较好的设计方案,在靠近检测点的位置对热电偶输出进行数字化。
图1. 在3000英尺电缆的远端提供电源,MAX6674/MAX6675在靠近检测点的位置量化热电偶输出,使EMI降至最小。
通过本地脉冲时序发生器(IC2和IC3)驱动MAX6674/MAX6675的SPI接口,IC2、IC3强制MAX6674/MAX6675以4800波特率、每秒钟四个字符产生异步串行输出数据,字符结构为:1位起始位、11位数据和1位停止位(MAX6675采用13位数据位)。对于MAX6674,11位数据包括10位表示温度数据的直接二进制数(MSB在前)、1位热电偶开路报警位,MAX6675提供12位数据和1位报警。
稳定的晶体振荡器确保精确的数据传输波特率。为保证正确的电路 *** 作,热电偶检测点必须与电路保持电气隔离,MAX6674/MAX6675必须在任何时间保持在-20°C至+85°C工作温度范围内。
电路通过双绞线连接远端电源和数据接收器,通过双绞线电缆为电路供电并将数据传输到数据接收端。温度测量由MAX6674/MAX6675的内部10位ADC实现,并将数据串行发送到电缆上。图2所示温度数据由MAX6674产生,并通过3000英尺的双绞电缆传输量化后的数据。这些数据表明热电偶处于较好的工作状态,测量温度为21.875°C。
图2. 在图1的数据接收器A、B端接收到的串行数据字,数据代表电缆另一端的热电偶测量温度为21.875°C。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)