人工智能在2018年需要思考的五个问题

人工智能在2018年需要思考的五个问题,第1张

2018年即将来临,人工智能的技术也将及进一步提升,但是对于人工智能五大难题必将成为专家们绞尽脑汁事情。如果现有的AI技术被广泛采用,将会给社会带来巨大的变化。

就大量关于“杀手级机器人”的炒作来说,2017年在人工智能方面取得了一些显著的进步。阿尔法狗、冷扑大师等棋牌机器人能让顶级玩家陷入绝望,在现实世界中,机器学习正被用于改善农业,以及扩大医疗保健的覆盖面。

但你最近和Siri或者Alexa对话过吗?如果有,那么你会知道,撇开这些炒作,以及踌躇满志的亿万富翁们,还有很多事情人工智能仍然不能做也不能理解。以下是五个棘手的问题,专家们将在明年为它们绞尽脑汁。请看小编为您一一道来:

 

语言真正的含义

在处理文本和语言方面,机器比以往任何时候都做的更好。 Facebook可以为视障人士读出图像描述。谷歌做了一个很不错的软件,能在回复电子邮件时给出简短的建议。然而,软件仍然不能真正理解我们的话语的含义,或我们想与它们分享的想法。波特兰州立大学教授梅兰妮·米切尔(Melanie Mitchell)表示:“人类能够把我们学到的概念以不同的方式结合起来,并在新的情况下应用。AI和机器学习系统则不能。”

Mitchell将今天的软件面临的问题描述为数学家Gian Carlo-Rota所说的“意义障碍”。一些领先的AI研究团队正试图找出克服它的方法。

这项工作的一部分,旨在为机器提供关于常识和实体世界的认知基础——它们奠定了我们的思维。例如,Facebook研究人员正通过观看视频来教软件理解现实。还有人在模拟我们可以用关于世界的知识做些什么。谷歌一直在试图打造能够理解隐喻的软件。米切尔实验过一种系统,使用类比和概念存储来解释照片中发生的事情。

阻碍机器革命的“现实差距”

机器人硬件已经发展的相当不错了。花500美元,你就能购买携带高清摄像机的手掌大小的无人机。搬运箱子的机器人以及两条腿走路的机器人也有所改进。那为什么我们还没有被繁忙的机械助手所包围?因为现在的机器人缺乏能够匹配他们先进的肌肉的大脑。

让机器人做任何事情都需要针对特定的任务进行特定的编程。它们可以通过重复的试验(和错误)学习 *** 作,如抓取物体。但是这个过程相对较慢。一个有希望的捷径是让机器人在虚拟的、模拟的世界中训练,然后把那些来之不易的知识下载到实体机器人体内。然而,这种方法被现实差距所困扰,具体来说,机器人在模拟过程中学到的技能,在转移到实体世界中的机器时,并不总是有效。

这种现实差距正在缩小。十月,在虚拟和真实的机器人手臂拾取多种物品的实验中——这些任务包括胶带分配器,玩具和梳子等等——谷歌报告了可喜的结果。

对于自动驾驶汽车从业者来说,取得进一步的进步很重要。在机器驾驶竞赛中,众多公司在在虚拟街道上部署虚拟车辆,他们希望能减少在实际交通和道路条件下测试所花费的时间和金钱。自动驾驶创业公司Aurora首席执行官Chris Urmson说,使虚拟测试更适用于真实车辆是团队的优先考虑之一。曾经领导谷歌母公司Alphabet的自主汽车项目的Urmson说:“明年或以后,我们可以利用这种技术来加速学习。”

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2549491.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存