1 引言
BCD是一种单片集成工艺技术。1986年由意法半导体(ST)公司率先研制成功,这种技术能够在同一芯片上制作双极管bipolar,CMOS和DMOS 器件,称为BCD工艺。
了解BCD工艺的特点,需要先了解双极管 bipolar,CMOS和DMOS器件这三种器件的特点,详见表1。
BCD工艺把双极器件和CMOS器件同时制作在同一芯片上。它综合了双极器件高跨导、强负载驱动能力和CMOS集成度高、低功耗的优点,使其互相取长补短,发挥各自的优点。更为重要的是,它集成了DMOS功率器件,DMOS可以在开关模式下工作,功耗极低。不需要昂贵的封装和冷却系统就可以将大功率传递给负载。低功耗是BCD工艺的一个主要优点之一。整合过的BCD工艺制程,可大幅降低功率耗损,提高系统性能,节省电路的封装费用,并具有更好的可靠性。
2 BCD工艺关键技术简介 2.1 BCD工艺的基本要求
首先,BCD工艺必须把双极器件、CMOS器件和DMOS器件同时制作在同一芯片上,而且这三种器件在集成后应基本上能具有各自分立时所具有的良好性能;其次,BCD工艺制造出来的芯片应具有更好的综合性能;此外,相对于其中最复杂的工艺(如双阱、多层布线、多层多晶硅的CMOS工艺)不应增加太多的工艺步骤。
2.2 BCD工艺兼容性考虑[1]
BCD工艺典型器件包括低压CMOS管、高压 MOS管、各种击穿电压的LDMOS、垂直NPN管、垂直PNP管、横向PNP管、肖特基二极管、阱电阻、多晶电阻、金属电阻等;有些工艺甚至还集成了EEPROM、结型场效应管JFET等器件。由于集成了如此丰富的器件,这就给电路设计者带来极大的灵活性,可以根据应用的需要来选择最合适的器件,从而提高整个电路的性能。
由于BCD工艺中器件种类多,必须做到高压器件和低压器件的兼容;双极工艺和CMOS工艺的相兼容,尤其是要选择合适的隔离技术;为控制制造成本,必须考虑光刻版的兼容性。考虑到器件各区的特殊要求,为减少工艺制造用的光刻版,应尽量使同种掺杂能兼容进行。因此,需要精确的工艺模拟和巧妙的工艺设计,有时必须在性能与集成兼容性上作折中选择。通常BCD采用双阱工艺,有的工艺会采用三阱甚至四阱工艺来制作不同击穿电压的高压器件。
2.3 DMOS器件的结构、工作原理与特点[2-5]
功率输出级DMOS管是此类电路的核心,往往占据整个芯片面积的1/2~2/3,它是整个集成电路的关键。DMOS与CMOS器件结构类似,也有源、漏、栅等电极,但是漏端击穿电压高。 DMOS主要有两种类型,垂直双扩散金属氧化物半导体场效应管VDMOSFET( verTIcal double-diffused MOSFET)和横向双扩散金属氧化物半导体场效应管LDMOSFET (lateral double-diffused MOSFET)。
LDMOS由于更容易与CMOS工艺兼容而被广泛采用。LDMOS器件结构如图1所示,LDMOS是一种双扩散结构的功率器件。这项技术是在相同的源/漏区域注入两次,一次注入浓度较大(典型注入剂量 1015cm-2)的砷(As),另一次注入浓度较小(典型剂量1013cm-2)的硼(B)。注入之后再进行一个高温推进过程,由于硼扩散比砷快,所以在栅极边界下会沿着横向扩散更远(图中P阱),形成一个有浓度梯度的沟道,它的沟道长度由这两次横向扩散的距离之差决定。为了增加击穿电压,在有源区和漏区之间有一个漂移区。LDMOS中的漂移区是该类器件设计的关键,漂移区的杂质浓度比较低,因此,当LDMOS 接高压时,漂移区由于是高阻,能够承受更高的电压。图1所示LDMOS的多晶扩展到漂移区的场氧上面,充当场极板,会弱化漂移区的表面电场,有利于提高击穿电压。场极板的作用大小与场极板的长度密切相关[6]。要使场极板能充分发挥作用,一要设计好SiO2层的厚度,二要设计好场极板的长度。
DMOS器件是由成百上千的单一结构的DMOS 单元所组成的。这些单元的数目是根据一个芯片所需要的驱动能力所决定的,DMOS的性能直接决定了芯片的驱动能力和芯片面积。对于一个由多个基本单元结构组成的LDMOS器件,其中一个最主要的考察参数是导通电阻,用R ds(on)表示。导通电阻是指在器件工作时,从漏到源的电阻。对于 LDMOS器件应尽可能减小导通电阻,就是BCD工艺流程所追求的目标。当导通电阻很小时,器件就会提供一个很好的开关特性,因为漏源之间小的导通电阻,会有较大的输出电流,从而可以具有更强的驱动能力。DMOS的主要技术指标有:导通电阻、阈值电压、击穿电压等。
对LDMOS而言,外延层的厚度、掺杂浓度、漂移区的长度是其最重要的特性参数。我们可以通过增加漂移区的长度以提高击穿电压,但是这会增加芯片面积和导通电阻。高压DMOS器件耐压和导通电阻取决于外延层的浓度、厚度及漂移区长度的折中选择。因为耐压和导通阻抗对于外延层的浓度和厚度的要求是矛盾的。高的击穿电压要求厚的轻掺杂外延层和长的漂移区,而低的导通电阻则要求薄的重掺杂外延层和短的漂移区,因此必须选择最佳外延参数和漂移区长度,以便在满足一定的源漏击穿电压的前提下,得到最小的导通电阻。另外,由于DMOS芯片面积大,对缺陷密度较敏感。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)