子带分解的自适应滤波器的FPGA实现

子带分解的自适应滤波器的FPGA实现,第1张

  0 引言

  自适应滤波器已经广泛应用于信道均衡、回声取消、系统识别、频谱估计等各个方面。基于子带分解的自适应滤波在提高收敛性能的同时又节省了一定的计算量。基于子带分解的自适应滤波是先将输入信号与参考信号经过分解滤波器组进行子带分解、抽取、子带自适应滤波、内插、通过合成滤波器组得到输出信号。基于子带分解的自适应滤波器的优点:

  (1)由于对信号的抽取,使完成自适应滤波所需的计算量得以减少;

  (2)在子带进行自适应滤波使收敛性能有所提高。

  1 基于子带分解的自适应滤波结构

  基于子带分解的自适应滤波,其时域结构如图1所示。将输入信号x(n)和参考信号d(n)分别进行子带分解,抽取,在子带上进行自适应滤波,再将子带上的估计信号y0(n)和y1(n)经内插和合成滤波器组得到最后的合成信号。其中滤波器W00(n)和W11(n)是两个子带上的自适应滤波器,而W01(n)和W10(n)表示子带间自适应滤波器。这是由于滤波器组均是FIR滤波器,不可能有锐截止的理想特性,只能以长度为代价来换取近似的特性;这时在严格采样下得到的子带信号必然有混叠,需加入子带间滤波以消除其影响。这里的子带自适应滤波器采用基于NLMS算法自适应滤波器。NLMS算法和LMS算法相比。虽然计算量稍有增加,但可使得自适应滤波器收敛速度大大提高。

子带分解的自适应滤波器的FPGA实现,第2张

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2629337.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-11
下一篇 2022-08-11

发表评论

登录后才能评论

评论列表(0条)

保存