引言
高级电信计算架构 (ATCA) 标准提供了一种设计电信设备的模块化方法。该行业标准的采用不但加速了产品设计而且还简化了现场升级。 在 ATCA 构架中,每一个 Carrier Blade 设备都要包括多达 8 个 AMC 模块,而这些模块均需要热插拔保护。载波板为每个 AMC 模块提供了两个主要电源:一个 3.3V 管理电源以及一个 12V 有效负载电源。为了帮助设计人员满足这些要求,我们设计了一款全功能双插槽 AdvancedMC™ 控制器 TPS2359,以提供支持两个 AMC 模块所必须的所有保护和监控电路。该控制器全面集成了管理电源浪涌控制、过电流保护以及 FET ORing 功能。添加两个外部电源晶体管可为每一个有效负载电源通道提供所有这些相同的功能。图 1 显示了双通道 AMC 应用的简化结构图,两个通道均由同一个电源供电。也可使用独立的电源为这两个通道供电。
图 1 利用 TPS2359 双通道控制器为两个 AdvancedMC 供电的应用的简化结构图该独特的控制器集成了有效负载电源和管理电源通道的精确的电流限制功能。有效负载电源电流限制的每个通道使用三个外部电阻,以满足 8.25A+/– 10% ATCA 规范。管理电源电流限制的每个通道使用一个外部电阻,以满足 195mA +/– 15% 的规范。
高精度电流限制
图 2 显示了该控制器的有效负载电流限制电路的简化结构图。放大器 A1 通过感应检测电阻器两端的电压来监控负载电流 ILOAD。管理电源通道使用了相类似的电路,所不同的是集成了电阻器 RSENSE 和 RSET。
ATCA 系统通常都要求冗余并行电源。MicroTCA 规范倡导了一种冗余技术 ,该技术需要一个微控制器来独立限制每一个电源的电流。负载所吸引的电流不能超过各个电源电流限制之和。 一种可用的替代运行模式是多重转换冗余。无论工作电源的数量如何,其都可以将负载电流限制在一个固定值。在一个多重转换系统中去除或插入电源均不会影响负载的电流限制。该技术不需要微控制器,从而使得与上述 MicroTCA 标准中所描述的冗余方法相比显得更简单和快速。这对于要求不必完全符合 MicroTCA 电源模块标准的 AMC 应用而言是一个颇具吸引力的方法。
图 3 有效负载电源电流限制使用多重转换功能的应用为了实施多重转换冗余,将冗余通道的 SUM 引脚连接在一起,并在该节点到接地之间绑定一个 RSUM 电阻器。不像 MicroTCA 冗余结构那样(在结构中每一个电源都有其自己的电阻器 RSUM),RSUM 需要驻留在多重转换结构的背板之上。图 3 显示了有效负载电源使用多重转换功能的一种应用。现在,电流限制阈值将适用于冗余电源所提供的电流的总和。在有效负载电源通道上实施多重转换冗余时,所有通道必须都使相同的 RSENSE 和 RSET 值。
结论
ATCA 是第一个解决电信设备电源要求的开放性标准。就 ATCA 而言,系统设计人员所面临的电源管理挑战包括有限的电流限制、高可用性冗余电源、热插拔要求、故障保护以及复杂性的状态监控。在 TPS2359 以紧凑的 36 引脚 QFN 封装实现了高精度电流限制电路、独特的多重转换特性以及所有必要的保护和监控电路的整合以后,这些问题都迎刃而解了。TPS2358 具有所有相同的功能性,但占用了一个 48 引脚 QFN 封装的面积,该封装可支持使用外部控制和指示(而不是 I2C™ 接口)的设计。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)