Google与NASA合作 将利用模拟和机器学习技术搜索外星生命

Google与NASA合作 将利用模拟和机器学习技术搜索外星生命,第1张

Google Cloud与NASA的前沿开发实验室合作,利用模拟和机器学习技术搜索外星生命。

弄清楚外层空间可能存在的确切位置是非常重要的:并不总是清楚哪些特定的条件和材料是生存所必需的。换句话说,数百万英里之外的世界或宇宙体是否具有必要的成分和定位并不是确定的,我们真正需要做的就是将地球作为案例研究。

科学家经常需要将来自不同行星和岩石的信息片段拼凑起来,以便猜测支持生命所需的理想条件。什么样的人可以真正做的是更具体的世界模型,这些模型可能会促进生命,然后利用这些场景来过滤天体。如果外星球适合模型,它可能是生命的家园。

因此,Google Cloud的开发人员已经制作了可以支持生活的各种世界的模拟。第一个项目模拟了行星的大气特性,例如其密度,温度,化学成分,压力和特定生物化合物的浓度。该软件被称为Atmos,旨在帮助科学家寻找可能带有生命的行星,从与地球相似的大气开始。

“有趣的是,Atmos从地球上发现的这些分子的浓度开始,然后以小增量调整浓度,以模拟有效无限数量的排列,在合理或物理稳定的范围内,” 应用AI的技术总监Massimo Mascaro 说。

然后可以将这些模拟与真实数据进行比较,以评估给定行星可能存活的可能性。

天体生物学家最感兴趣的是位于其母星周围可居住区域的岩石系外行星,其表面可能存在液态水。

因此,来自谷歌和美国宇航局实验室的第二个团队已经建立了一个名为INARA的基于机器学习的工具,通过研究高分辨率望远镜图像,可以识别岩石系外行星大气层中的化合物。

为了开发这个软件,brainiacs模拟了超过三百万个行星的光谱特征,它们的大气化学组成的指纹,并将它们标记为训练卷积神经网络(CNN)。因此,CNN可用于从美国宇航局开普勒太空船的大气图像和光线曲线中自动估算行星的化学成分。基本上,训练神经网络将望远镜图像与化学成分联系起来,因此,你展示了一组给定的图像,它会吐出相关的化学成分 - 可以用来评估那些是否会导致生命爆发在现场。

INARA需要几秒钟才能找出可能存在于世界大气中的生物化合物。“考虑到开普勒望远镜产生的数据集的规模,以及即将发射的过境系外行星测量卫星(TESS)卫星将返回地球的数据量更大,最大限度地缩短每颗行星的分析时间这项研究确保我们不会错过任何可行的候选人,“马斯卡罗总结道。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2655644.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-13
下一篇 2022-08-13

发表评论

登录后才能评论

评论列表(0条)

保存