机器学习是物联网发展的关键因素,因为物联网设备生成的大量结构化和非结构化数据是无法在人的控制下进行管理的。因此,可以通过机器学习算法来收集和精简数据,以找到其真正的价值。这将在两个层面上实现:
在本地层面上,机器学习将体现在物联网设备或网关中,以提供对其收集数据的实时响应。
在全局层面上,机器学习将应用于云端,用来汇总数据并识别出可以让消费者和供应商都受益的趋势或重要全局细节。
大规模物联网物联网设备的大量出现也带来了一些问题,这种局面使大规模管理和设备监控变得非常重要,并且利用物联网提供数据的过程中会产生瓶颈。对此,上面提到的机器学习可以解决一些问题。除了机器学习之外,传感器融合等技术还可以通过融合不同来源来减少收集数据的不确定性。自动计算可以帮助设备实现更高程度的自我管理,并在处理潜在数十亿设备提供的数据时降低云级开销。
安全性对于物联网的未来,安全性既是一个可以大有所为的创新领域,也是一个问题所在。这一问题不仅包括数据安全性,还包括大量潜在端点设备的访问安全性和整体管理安全性。物联网带来的一个比较严峻的问题在于大量设备都共享相同的软件,这些软件一旦出现漏洞,攻击者只需做很少的 *** 作就可以入侵大量设备,构建起僵尸网络。这只有通过设备自主管理才能应对,也就是设备在创建更新时监视和保护自身。
关键点机器学习算法和大数据架构必须适应物联网的发展。
数十亿物联网设备将会带来新的问题,同时推动新的管理和安全型解决方案。
新标准将推动设备之间实现互 *** 作,以改善管理、通信和安全性(以及新法规的合规性)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)