众所周知,很多的研究都是起源于对自然界不同领域存在类似现象的假设开始的。因为宇宙万物遵循着相同的规律,即使外表再怎样的千变万化,而内在的规则却是有着高度一致性。这正是宇宙的神奇之处,也是人类难解的秘密。光子晶体的产生亦是如此,它是科学家们在假设光子也可以具有类似于电子在普通晶体中传播的规律的基础上发展出来的。
从晶体结构图中,我们可以看出晶体内部的原子是周期性有序排列的,正是这种周期势场的存在,使得运动的电子受到周期势场的布拉格散射,从而形成能带结构,带与带之间可能存在带隙。电子波的能量如果落在带隙中,就无法继续传播。其实,不论是电磁波,还是其它波如光波等,只要受到周期性调制,都有能带结构,也都有可能出现带隙。而能量落在带隙中的波同样不能传播。
简言之,半导体中离子的周期性排列产生了能带结构,而能带又控制着载流子(半导体中的电子或者空穴)在半导体中的运动。相似的,在光子晶体中是由光的折射率指数的周期性变化产生了光带隙结构,从而由光带隙结构控制着光在光子晶体中的运动。 光子晶体的结构可以这样理解,正如半导体材料在晶格结点(各个原子所在位点)周期性的出现离子一样,光子晶体是在高折射率材料的某些位置周期性的出现低折射率(如人工造成的空气空穴)的材料。如下图所示的光子晶体材料从一维到三维的结构,可以明显看出周期性的存在,而且三维光子晶体的结构图与普通的硅晶体单从结构是很相似的。高低折射率的材料交替排列形成周期性结构就可以产生光子晶体带隙(BandGap,类似于半导体中的禁带)。而周期排列的低折射率位点的之间的距离大小相同,导致了一定距离大小的光子晶体只对一定频率的光波产生能带效应。也就是只有某种频率的光才会在某种周期距离一定的光子晶体中被完全禁止传播。
如果只在一个方向上存在周期性结构,那么光子带隙只能出现在这个方向。如果在三个方向上都存在周期结构,那么可以出现全方位的光子带隙,特定频率的光进入光子晶体后将在各个方向都禁止传播。这对光子晶体来说是一个最重要的特性。而且实际上,这种三维光子晶体也是最先被制造出来的。
因为光被禁止出现在光子晶体带隙中,所以我们可以预见到我们能够自由控制光的行为。例如,如果我们考虑引入一种光辐射层,该层产生的光和光子晶体中的光子带隙频率相同,那么由于光的频率和带隙一致则禁止光出现在该带隙中这个原则就可以避免光辐射的产生。这就使我们可以控制以前不可避免的自发辐射。
而如果我们通过引入缺陷破坏光子晶体的周期结构特性,那么在光子带隙中将形成相应的缺陷能级。将仅仅有特定频率的光可在这个缺陷能级中出现。这就可以用来制造单模发光二极管和零域值激光发射器(详见光子晶体应用)。而如果产生了缺陷条纹--即沿着一定的路线引入缺陷,那么就可以形成一条光的通路,类似于电流在导线中传播一样,只有沿着光子导线(即缺陷条纹)传播的光子得以顺利传播,其它任何试图脱离导线的光子都将被完全禁止。理想状态下我们已经实现了一条无任何损耗的光通路。这种光通路甚至比光纤更有效。 近年来,光子晶体得到了越来越多的关注和推崇。科学家们从各个方面来寻求开发应用光子晶体的途径。然而,光子晶体得到广泛应用,还需要解决以下几个问题:
1)制作可以对波长在可见光范围内的光产生BandGap的光子晶体还有很大的困难特备是三维光子晶体(具体内容请参看光子晶体制造方法介绍)。
2)解决随意在任意位置引入需要的缺陷的问题--上文已经提到这种缺陷意义。
3)制作高效率光子传导材料的技术问题。
4)如何将现在的电流和电压加到光子晶体上的问题。晶体结构可在外加电场和磁场控制下进行转换从而成为可调节的光子晶体。该种可调节晶体结构的光子晶体可用来制作体积微小、广泛用於遥距通讯和卫星通讯的远红外激光器,亦有助研究激发态分子的化学反应,对化工生产、药物研制及生物科技都十分重要。
固体物理与光子晶体的联系与区别
固体物理中的许多其它概念也可以用在光子晶体中,不过需要指出的是光子晶体与常规的晶体虽然有相同的地方,也有本质的不同,如光子服从的是麦克斯韦(Maxwell)方程,电子服从的是薛定谔方程;光子波是矢量波,而电子波是标量波;电子是自旋为1/2的费米子,光子是自旋为1的玻色子;电子之间有很强的相互作用,而光子之间没有。
复享科技光子晶体微区角分辨测量系统
光子晶体是一种人造微结构,它的晶格尺寸与光波的波长相当,是晶体晶格尺寸的1000倍。光子晶体的制作具有相当大的难度,根据适用的波长范围,制作技术也不同。此外,还需要引入缺陷态,因此,制作过程往往需要采用多种技术才能完成。1.精密加工法
Ames实验室证实了金刚石结构的光子晶体具有很大的带隙后, Yablonovitch等人便采用活性离子束以打孔法制造了第一块具有完全光子带隙(photonic band gap, PBG)的三维光子晶体。他们采用反应离子束刻蚀技术在一块高介电常数的底板表面以偏离法线35.26°的角度从3个方向钻孔,各方向的夹角为120°。但是,当孔钻得较深,并彼此交叉时,孔会产生位置偏离,从而影响其周期性结构。
Ho等提出了木堆结构(Woodp ile Structure) ,即用介电柱的多层堆积形成完全带隙的介电结构。Ozbay等用铝棒堆积成Woodpile结构,其缺点是工艺比较繁琐,且结构的周期准确性难以保证。Ozbay等又发展了逐层叠加结构(Layer-
by-layer Structure) ,即先制造出各向异性的二维Si/SiO2 层状结构,然后以Woodp ile结构的周期结构形式进行逐层叠加,即四层形成一个周期。通过层叠
法和半导体工艺的结合,使得设计出的光子晶体具有禁带宽、带隙可达到红外及近红外区的优点。由于是以半导体工业成熟的技术为基础,精密加工法是制备光子晶体最为稳定可靠的方法。然而其工艺复杂、造价昂贵,并且受现有半导体技术水平的限制,若要制备更小波长尺度的三维光子晶体、晶体掺杂以及缺陷引入等方面却存在着很大的挑战。
2.胶体晶体法
早在1968年, Kriger等人就发现了由乳液聚合得到的聚苯乙烯胶乳(50~500nm)在体积分数超过35%时出现蛋白石特有的颜色。蛋白石是一种具有不完全带隙的光子晶体,其独有的颜色是由可见光的布拉格衍射产生的。由于胶体晶体的晶格尺寸在亚微米级量级,它可望成为制造近红外及可见光波段三维光子晶体的一条有效途径 。
在溶液中,胶体颗粒小球表面带有电荷,在适当的电荷密度和颗粒浓度下,通过静电力相互作用,小球自组织生长成周期性结构,形成胶体晶体。在毛细容器中,利用胶粒与带电玻璃器壁的静电力相互作用。当胶粒体积分数较高时,胶体悬浮颗粒以面心立方( FCC)点阵堆积当体积分数较低时,倾向于体心立方(BCC)点阵堆积,晶体的密排面平行于器壁表面。
目前,已经制备的胶体晶体多为聚苯乙烯乳胶体系和二氧化硅胶体颗粒体系。遗憾的是它们不具备高的介电比和合适的网络拓扑结构,因而并不能产生完全光子带隙。为了提高介电比,可以将胶体晶体小心脱水,得到紧密堆积的蛋白石结构。
3.反蛋白石结构法
反蛋白石结构是指低介电系数的小球(通常为空气小球)以面心立方密堆积结构分布于高介电系数的连续介质中,这种结构将有望产生完全能隙。1997年Velev等人首先用经阳离子表面活性剂CTAB浸泡过的聚苯乙烯颗粒形成的胶体晶体为模
板,合成了含三维有序排列的空气球的二氧化硅反蛋白石材料。主要采用模板法,具体 *** 作为:以颗粒小球所构成的紧密堆积结构为模板,向小球间隙填充高介电常数的Si, Ge, TiO2 等材料,然后通过煅烧、化学腐蚀等方法将模板小球除去,得到三维空间的周期结构。Vlasov等人以SiO2 胶体晶体为模板,制得了硒化镉有序大孔量子点阵固体材料。Blanco等人以SiO2 胶体晶体为模板,用化学气相沉积法向其空隙填入硅,形成纯硅反蛋白石结构的光子晶体。
4.其他方法
(1)飞秒激光干涉法
利用飞秒激光干涉法已实现了一维、二维和三维近红外波段的光子晶体制作。该方法利用衍射分束器将飞秒脉冲分为多束,然后用两个透镜会聚叠加。搭建的实验装置可实现较高的调整精度,以实现飞秒脉冲的瞬态叠加。采用二倍频的飞秒激光, 波长为380nm, 脉宽80fs, 重复频率82MHz,一次照射制作, 照射功率约100μW,时间20 s。使用的是SU - 8胶等聚合物,聚合物薄膜厚度可达25μm。经激光照射后,进行显影定影,即可形成光子晶体结构。通过衍射分束器可将一束激光分为9束,再选择不同角度的几束实现不同维度的光子晶体曝光选择两束可以实现一维光子晶体加工,选择四束可以实现二维光子晶体加工,而选择合适角度的六束激光并使之叠加干涉,可以实现三维光子晶体微加工,使加工精度更高。利用该方法, Campbell等人制成了可在可见光和近红外光波段工作的三维光子晶体。
(2)聚焦离子束
利用聚焦离子束及其工作平台可以灵活转动的特点,在多孔的硅上沿一定方向钻孔,形成Yabno-vitch结构的三维光子晶体。也可在多层膜上刻蚀可在近红外波段工作的一维槽和多层膜垂直相交的二维光子晶体结构。国内已利用该方法制作了可见光和近红外波段二维光子晶体,并测试了其光学特性。实验表明,聚焦离子束可以加工出较高质量的二维光子晶体,加工的无源光子晶体光学特性较好。
光子晶体是一种人造微结构,它的晶格尺寸与光波的波长相当,是晶体晶格尺寸的1000倍。光子晶体的制作具有相当大的难度,根据适用的波长范围,制作技术也不同。此外,还需要引入缺陷态,因此,制作过程往往需要采用多种技术才能完成。1.精密加工法
Ames实验室证实了金刚石结构的光子晶体具有很大的带隙后, Yablonovitch等人便采用活性离子束以打孔法制造了第一块具有完全光子带隙(photonic band gap, PBG)的三维光子晶体。他们采用反应离子束刻蚀技术在一块高介电常数的底板表面以偏离法线35.26°的角度从3个方向钻孔,各方向的夹角为120°。但是,当孔钻得较深,并彼此交叉时,孔会产生位置偏离,从而影响其周期性结构。
Ho等提出了木堆结构(Woodp ile Structure) ,即用介电柱的多层堆积形成完全带隙的介电结构。Ozbay等用铝棒堆积成Woodpile结构,其缺点是工艺比较繁琐,且结构的周期准确性难以保证。Ozbay等又发展了逐层叠加结构(Layer-
by-layer Structure) ,即先制造出各向异性的二维Si/SiO2 层状结构,然后以Woodp ile结构的周期结构形式进行逐层叠加,即四层形成一个周期。通过层叠
法和半导体工艺的结合,使得设计出的光子晶体具有禁带宽、带隙可达到红外及近红外区的优点。由于是以半导体工业成熟的技术为基础,精密加工法是制备光子晶体最为稳定可靠的方法。然而其工艺复杂、造价昂贵,并且受现有半导体技术水平的限制,若要制备更小波长尺度的三维光子晶体、晶体掺杂以及缺陷引入等方面却存在着很大的挑战。
2.胶体晶体法
早在1968年, Kriger等人就发现了由乳液聚合得到的聚苯乙烯胶乳(50~500nm)在体积分数超过35%时出现蛋白石特有的颜色。蛋白石是一种具有不完全带隙的光子晶体,其独有的颜色是由可见光的布拉格衍射产生的。由于胶体晶体的晶格尺寸在亚微米级量级,它可望成为制造近红外及可见光波段三维光子晶体的一条有效途径 。
在溶液中,胶体颗粒小球表面带有电荷,在适当的电荷密度和颗粒浓度下,通过静电力相互作用,小球自组织生长成周期性结构,形成胶体晶体。在毛细容器中,利用胶粒与带电玻璃器壁的静电力相互作用。当胶粒体积分数较高时,胶体悬浮颗粒以面心立方( FCC)点阵堆积当体积分数较低时,倾向于体心立方(BCC)点阵堆积,晶体的密排面平行于器壁表面。
目前,已经制备的胶体晶体多为聚苯乙烯乳胶体系和二氧化硅胶体颗粒体系。遗憾的是它们不具备高的介电比和合适的网络拓扑结构,因而并不能产生完全光子带隙。为了提高介电比,可以将胶体晶体小心脱水,得到紧密堆积的蛋白石结构。
3.反蛋白石结构法
反蛋白石结构是指低介电系数的小球(通常为空气小球)以面心立方密堆积结构分布于高介电系数的连续介质中,这种结构将有望产生完全能隙。1997年Velev等人首先用经阳离子表面活性剂CTAB浸泡过的聚苯乙烯颗粒形成的胶体晶体为模
板,合成了含三维有序排列的空气球的二氧化硅反蛋白石材料。主要采用模板法,具体 *** 作为:以颗粒小球所构成的紧密堆积结构为模板,向小球间隙填充高介电常数的Si, Ge, TiO2 等材料,然后通过煅烧、化学腐蚀等方法将模板小球除去,得到三维空间的周期结构。Vlasov等人以SiO2 胶体晶体为模板,制得了硒化镉有序大孔量子点阵固体材料。Blanco等人以SiO2 胶体晶体为模板,用化学气相沉积法向其空隙填入硅,形成纯硅反蛋白石结构的光子晶体。
4.其他方法
(1)飞秒激光干涉法
利用飞秒激光干涉法已实现了一维、二维和三维近红外波段的光子晶体制作。该方法利用衍射分束器将飞秒脉冲分为多束,然后用两个透镜会聚叠加。搭建的实验装置可实现较高的调整精度,以实现飞秒脉冲的瞬态叠加。采用二倍频的飞秒激光, 波长为380nm, 脉宽80fs, 重复频率82MHz,一次照射制作, 照射功率约100μW,时间20 s。使用的是SU - 8胶等聚合物,聚合物薄膜厚度可达25μm。经激光照射后,进行显影定影,即可形成光子晶体结构。通过衍射分束器可将一束激光分为9束,再选择不同角度的几束实现不同维度的光子晶体曝光选择两束可以实现一维光子晶体加工,选择四束可以实现二维光子晶体加工,而选择合适角度的六束激光并使之叠加干涉,可以实现三维光子晶体微加工,使加工精度更高。利用该方法, Campbell等人制成了可在可见光和近红外光波段工作的三维光子晶体。
(2)聚焦离子束
利用聚焦离子束及其工作平台可以灵活转动的特点,在多孔的硅上沿一定方向钻孔,形成Yabno-vitch结构的三维光子晶体。也可在多层膜上刻蚀可在近红外波段工作的一维槽和多层膜垂直相交的二维光子晶体结构。国内已利用该方法制作了可见光和近红外波段二维光子晶体,并测试了其光学特性。实验表明,聚焦离子束可以加工出较高质量的二维光子晶体,加工的无源光子晶体光学特性较好。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)