伏安特性是什么?

伏安特性是什么?,第1张

加在电气设备或者元件两端电压和通过电流的关系叫伏安特性。例:对于一个电阻来说,它两端的电压U与通过它的电流I是成正比的,那么就是电阻的伏安特性曲线是一条直线。

二极管伏安特性曲线

某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。因为温度可以决定电阻的大小。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其它导体是否适用,仍然需要实验的检验。实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。

半导体二极管的核心是PN结,它的特性就是PN结的特性——单向导电性。用实验的方法,在二极管的阳极和阴极两端加上不同极性和不同数值的电压,同时测量流过二极管的电流值,就可得到二极管的伏一安特性曲线。该曲线是非线性的,如图1-13所示。正向特性和反向特性的特点如下。

                     

    1.正向特性

    当正向电压很低时,正向电流几乎为零,P89LPC954FBD这是因为外加电压的电场还不能克服PN结内部的内电场,内电场阻挡了多数载流子的扩散运动,此时二极管呈现高电阻值,基本上还是处于截止的状态。如图1 - 13所示,正向电压超过二极管开启电压Uon(又称为死区电压)时,电流增长较快,二极管处于导通状态。开启电压与二极管的材料和工作温度有关,通常硅管的开启电压为Uon=0.5V(A点),锗管为Uon=0.1 V(A'点)。二极管导通后,二极管两端的导通压降很低,硅管为0. 6~0.7 V,锗管为0.2~0.3 V如图1-13中B、B'点。

    2.反向特性

    在分析PN结加上反向电压时,已知少数载流子的漂移运动形成反向电流。因少数载子数量少,且在一定温度下数量基本维持不变,因此,厦向电压在一定范围内增大时,反向电流极微小且基本保持不变,等于反向饱和电流Is。

    当反向电压增大到UBR时,外电场能把原子核外层的电子强制拉出来,使半导体内载流子的数目急剧增加,反向电流突然增大,二极管呈现反向击穿的现象如图1-13中D、D'点。二极管被反向击穿后,就失去了单向导电性。二极管反向击穿又分为电击穿和热击穿,利用电击穿可制成稳压管,而热击穿将引起电路故障,使用时一定要注意避免二极管发生反向热击穿的现象。

    二极管的特性对温度很敏感。实验表明,当温度升高时,二极管的正向特性曲线将向纵轴移动,开启电压及导通压降都有所减小,反向饱和电流将增大,反向击穿电压也将减小。

半导体二极管的重要特性之一是什么?——答案:单向导电性。

半导体二极管最重要的特性是单向导电性。即当外加正向电压时,它呈现的电阻(正向电阻)比较小,通过的电流比较大;当外加反向电压时,它呈现的电阻(反向电阻)很大,通过的电流很小。

半导体二极管是指利用半导体特性的两端电子器件。最常见的半导体二极管是PN结型二极管和金属半导体接触二极管。它们的共同特点是伏安特性的不对称性,即电流沿其一个方向呈现良好的导电性,而在相反方向呈现高阻特性。可用作为整流、检波、稳压、恒流、变容、开关、发光及光电转换等。利用高掺杂PN结中载流子的隧道效应可制成超高频放大或超高速开关的隧道二极管。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/6249353.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-19
下一篇 2023-03-19

发表评论

登录后才能评论

评论列表(0条)

保存