(2)无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族V族与VI族;VI族与VI族的结合化合物,但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。[2]
(3)有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。[2]
(4)非晶态半导体。它又被叫做无定形半导体或玻璃半导体,属于半导电性的一类材料。非晶半导体和其他非晶材料一样,都是短程有序、长程无序结构。它主要是通过改变原子相对位置,改变原有的周期性排列,形成非晶硅。晶态和非晶态主要区别于原子排列是否具有长程序。非晶态半导体的性能控制难,随着技术的发明,非晶态半导体开始使用。这一制作工序简单,主要用于工程类,在光吸收方面有很好的效果,主要运用到太阳能电池和液晶显示屏中。[2]
(5)本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带,受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。电子导电时等电量的空穴会沿其反方向运动。[5] 它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子-空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。[6]
一、N型半导体N型半导体也称为电子型半导体,即自由电子浓度远大于空穴浓度的杂质半导体。
形成原理
掺杂和缺陷均可造成导带中电子浓度的增高. 对于锗、硅类半导体材料,掺杂Ⅴ族元素,当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主. Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素. 某些氧化物半导体,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度。
二、P型半导体
P型半导体一般指空穴型半导体,是以带正电的空穴导电为主的半导体。
形成
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。
特点:
(一)、N型半导体
由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
(二)、P型半导体
掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
一.定义不一样1.电导体电导体(conductor)就是指电阻不大且便于传导电流的化学物质。电导体中出现很多可随意运动的自由电子称之为自由电子。在外面静电场的作用下,自由电子作定向运动,产生显著的电流量。
2.半导体材料半导体材料(semiconductor),指常温状态导电率能处于电导体(conductor)与绝缘物(insulator)中间的原材料。半导体材料在录音机.电视及其温度测量上拥有普遍的运用。如二极管便是使用半导体材料制作的元器件。
二.归类不一样1.第一类电导体金属材料是最普遍的一类电导体。金属材料中的原子和里层电子器件组成原子实,标准地排成点阵式,而外面的价电子非常容易摆脱原子的约束而变成自由电荷,他们组成导电性的自由电子。
2.第二类电导体电解质溶液的溶剂或称之为锂电池电解液的熔化电解质溶液也是电导体,其自由电子是正空气负离子。试验发觉,绝大多数纯液态尽管也可以电离度,但电离度水平不大,因此并不是电导体。
3.别的介电质电的绝缘物又称之为电解介质。他们的电阻极高,比合金的电阻大1014倍之上。绝缘物在一些外部标准(如加温.加髙压等)危害下,会被“穿透”,而转换为电导体。绝缘物或电解介质的关键电力学特性体现在氧化还原电位.电极化.耗损和穿透等环节中。
4.半导体材料半导体器件许多,按成分可分成原素半导体材料和有机化合物半导体材料两类。锗和硅是最常见的元素半导体材料;化学物质半导体材料包含第Ⅲ和第Ⅴ族化学物质(氮化镓.磷化镓等).第Ⅱ和第Ⅵ族化学物质(硫化镉.氧化钨等).金属氧化物(锰.铬.铁.铜的金属氧化物)。及其由Ⅲ-Ⅴ族化学物质和Ⅱ-Ⅵ族化学物质构成的离子晶体(镓铝砷.镓砷磷等)。除以上晶态半导体材料外,也有非晶态的夹层玻璃半导体材料.有机化学半导体材料等。
三.特点不一样1.热敏电阻特点半导体材料的电阻值随环境温度改变会出现显著地更改。2.感光特点半导体材料的电阻对光线的改变十分比较敏感。有阳光照射时.电阻不大;无阳光照射时,电阻非常大。3.夹杂特点在纯粹的半导体材料中,掺人极少量的残渣原素,便会使它的电阻产生巨大的转变。4.半导体材料半导体材料五大特点∶夹杂性,热敏性,光敏性,负电阻温度特点,整流器特点。5.在产生分子结构的半导体材料中,人为因素地掺加特殊的残渣原素,导电率能具备可预测性。6.在阳光照射和辐射热标准下,其导电率有显著的转变。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)