电致发光是这样的:发光材料中有发光中心(一种参杂元素),也有近自由的电子,这些电子在外加电场的加速下撞击发光中心的原子,使得其中的电子激发到高能级,这些电子退激返回低能态时,就以光的形式释放出多余的能量。
半导体发光与电致发光的区别主要就是:前者中的电子本来就处于高能级的导带底部,外加电场的作用是推动这些电子进逼耗尽层,在那里跳进本来就低的能级——价带顶部的空轨道;而后者中,外加电场是要先加速近自由的电子,使其具有足够的动能,然后去激发发光中心里本处于低能级的电子,然后退激发光。后者所需电压往往比前者大不少,因为加速需要较强的电场。
原子、分子和某些半导体材料,能分别吸收和放出一定波长的光或电磁波。根据固体能带论,半导体中电子的能量状态分为价带和导带,当电子从一个带中能态E1跃迁(转移)到另一带中的能态E2时,就会发出或吸收一定频率(υ)的光。υ与能量差(ΔE=E2-E1)成正比,即
υ=ΔE/h (Hz)
此式称为玻尔条件。式中h=6.626×10-34J·s。当发光二极管工作时,在正偏下,通常半导体的空导带被通过结向其中注入的电子所占据,这些电子与价带上的空穴复合,放射出光子,这就产生了光。发射的光子能量近似为特定半导体的导带与价带之间的带隙能量。这种自然发射过程叫作自发辐射复合(图1)。显然,辐射跃迁是复合发光的基础。注入电子的复合也可能是不发光的,即非辐射复合。在非辐射复合的情况下,导带电子失去的能量可以变成多个声子,使晶体发热,这种过程称为多声子跃迁;也可以和价带空穴复合,把能量交给导带中的另一个电子,使其处于高能态,再通过热平衡过程把多余的能量交给晶格,这种过程称为俄歇复合。随着电子浓度的提高,这种过程将变得更加重要。带间跃迁时,辐射复合和非辐射复合的两种过程相互竞争。有的发光材料表现为辐射复合占优势。
发光是物体内部以某种方式储存的能量转化为光辐射的过程。发光物体的光辐射是材料中受激发的电子跃迁到基态时产生的。半导体(主要是元素周期表中Ⅲ族和Ⅴ族元素构成的化合物半导体)发光二极管属于电流激发的电致发光器件。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)