大家对晶晨半导体评价怎样?在IC公司做Android方向有无前途?

大家对晶晨半导体评价怎样?在IC公司做Android方向有无前途?,第1张

内忧外患,但没有忧患意识。管理混乱,科创板后内斗严重,拉帮结派,很多小领导无技术无品德无作为或者瞎搞。市场竞争激烈,和海思正面竞争,日子不好过。

所获荣誉:

2020年1月9日,胡润研究院发布《2019胡润中国500强民营企业》, 晶晨半导体以市值200亿元位列第367位。

2020年6月18日,晶晨半导体以230亿元人民币价值位列《2020胡润中国芯片设计10强民营企业》第9名。

企业介绍:

晶晨半导体通过结合专有的高清多媒体处理引擎和系统IP以及业内领先的多核处理器及图形处理技术,为客户提供先进的芯片解决方案。

晶晨半导体的定制芯片解决方案集成度高,并能保证产品在尺寸,性能、功耗和价格方面达到良好平衡。晶晨半导体可为客户提供基于安卓系统,Qt系统以及HTML5标准的整体解决方案,帮助客户快速开发领先市场的产品。

自3月开始,宝岛台湾,遭遇半个多世纪以来最严重的一次干旱,岛内严重缺水。

那么,台湾缺水将 对全球半导体产业链产生什么影响?

对国内半导体产业链又有哪些机会?

哪些公司又有望受益呢?

本期社长就来和你分析一下,要看到最后[可爱]

要知道,半导体芯片生产的每个环节都离不开大量用水。这对于拥有台积电等半导体巨头,且代工市场占全球65%的台湾而言,可谓重大打击。一旦缺水局面得不到缓解,全球缺芯局面恐将进一步恶化。

但从另一方面来看,缺芯也将倒逼需求端扩产大潮的强劲增长,作为全球半导体产业链重地,中国大陆半导体市场规模约占全球25%,且还在不断上升。

这也就意味着,设备环节和制造环节,都将在国产替代逻辑下充分受益。国内5大半导体潜力龙头,有望迎来黄金发展期。#半导体# #芯片#

总市值:217亿

晶方 科技 成立于2005年,长期专注于传感器领域的封装测试及专业代工业务。是全球第二大CIS晶圆级芯片封测服务商。

2020年净利同比增长252%,这其中,封测业务,毛利率高达80%。 这在全行业都实属难得。

不仅如此,据社长了解,实际上,早在2007年,晶方 科技 就成功研发出拥有自主知识产权的超薄晶圆级芯片封装技术,不仅彻底改变了封装行业,更使高性能,小型化的摄像头模块成为可能。

而 得益于车载摄像头在 汽车 智能化、网联化的趋势下快速兴起,公司将长期受益。

总市值:243亿

从服装巨头,转型锂电龙头,即使是在“神仙”汇集的A股,这样的故事也足够魔幻。而成立于1992年的杉杉股份,正是故事的主角。杉杉股份业务涵盖锂离子电池材料、电池系统集成以及服装、创投等业务。 是国内唯一一家从服装企业成功转型为新能源产业的领军企业。

目前已实现碳硅负极材料量产,其中,正极年产量6万吨,负极年产量8万吨,电解液年产量4万吨,综合产能位列全球第一。

而从杉杉股份先后与澳大利亚锂矿公司Altura以及洛阳钼业签订合作协议来看,社长觉得杉杉股份已不再满足于锂电龙头的地位,它正在尝试以锂电材料为基础,撬动整个新能源产业版图。

总市值:345亿

立昂微成立于2002年,是国内少有的具有硅材料及芯片制造能力的完整产业平台,业务横跨半导体硅片及功率器件两大细分赛道,一体化优势明显。同时,凭借强劲的研发实力,立昂微目前 已切入安森美、中芯国际、华润微等国内外知名企业供应链,盈利水平逐年提升 。

从2016年到2020年前三季度,立昂微营收增速始终保持在30%左右。其中,12英寸半导体硅片相关技术已于2017年通过正式验收,标志着立昂微已走在我国大尺寸半导体硅片生产工艺的前列。

而就在今年3月,立昂微宣布募投52亿扩充12寸硅片产能,加码布局功率景气赛道,从这个角度看,社长认为硅片龙头腾飞,指日可待。

总市值:382亿

士兰微成立于1997年,经过二十多年的发展,已经从一家纯芯片设计公司,发展成为目前国内为数不多的,集设计与制造一体化的综合型半导体厂商。主要产品包括集成电路、半导体分立器件、LED产品等大类。

得益于士兰微,完全走的是自主知识产权的道路,截至2021年1月初已经有部分技术水平领先的国产设备通过工艺验证,比原定验收时间缩短50%。

除此以外,士兰微智能功率模块的技术水平已排进全球前十,在行业需求快速增加、公司自身相对竞争优势明显的背景下,社长预计未来几年,公司IPM模块的营业收入将会持续快速成长。

总市值:1210亿

闻泰 科技 是目前国内最大的手机代工ODM企业,早在2015年,闻泰 科技 的代工产品出货量,就已经成为全球第一。

在这里社长特别要提到一点,目前,全球主流手机品牌厂商,只有vivo和苹果全部采用自研设计,其他的公司,包括三星、华为,都是要和ODM厂合作的,尤其以性价比著称的小米,75%的手机,都由ODM公司代工。

这也是为何闻泰 科技 的业绩能一直保持在较高水平。数据显示,即便是在 全球智能手机市场低迷的过去四年里,闻泰的年均复合增长率高达94.37% 。

而随着闻泰 科技 在2020年对全球领先的 汽车 功率半导体厂商,安世半导体的全资收购,未来有望深度受益于 汽车 电动化的快速发展。

#股票# #A股# #股市分析#

你看好哪个公司,评论区一起聊一聊[可爱]

以上观点仅供参考,不作为你的 *** 作依据!

在受到西方国的技术封锁、原材料断供等手段之后,我国的芯片市场遭到了前所未有的打击,在这样的情况下,诸多西方媒体纷纷跳出来说着“中国芯片自主研发是妄想”等言论,但事实真就如他们所说吗?

其实随着 我国 科技 方面的不断进步,一个个 科技 难题被攻破 ,我国在芯片领域的发展可谓是突飞猛进,用ASML总裁的话来说就是: “如果继续对中国进行技术封锁,要不了多久中国就能实现芯片自主化。”

在“中国芯”的研发道路上, 不仅光刻机被荷兰ASML垄断,制造芯片的核心材料也是时常遭受“断供威胁”。

芯片的研发制作必然离不开光刻,而在光刻的过程中, 光刻胶和光刻机都是其中必不可少的一员 ,光刻胶的精密度越大则生产出的芯片就越先进。

简单来说,如果没有好的光刻胶,即便我们有最先进的EUV光刻机也是形同虚设, 光刻胶是除了光刻机之外的第二大技术难题。

高精度光刻胶的生产技术牢牢掌握在日本手中,我国只能够生产出一些低精度的光刻胶, 高精度光刻胶的来源主要是进口 ,而据数据显示, 全球市场上高端光刻胶由90%以上是由日本和美国提供,我们也时常因此被“卡脖子”。

就是在西方强国技术封锁的情况下, 我国将光刻胶自主研发提上了日程 ,并在2019年建立光刻胶的生产基地,耗时两年后终于传来了好消息: 光刻胶已经自主研发成功 ,国产光刻胶迎来曙光,为国内半导体行业的发展带来了新的希望,一举摆脱“卡脖子”的窘境。

除了制造芯片的核心材料光刻胶得到突破以外 ,我国在芯片设备研发上也传来了利好消息 ,在全球各大芯片企业研发刻蚀机无法取得突破的同时, 我国的 中微半导体公司率先研制出了3nm刻蚀机 ,并且已经完成了原型机设计、测试工作,如此高精度的刻蚀机可以说在全球都是不可多得的存在。

有人看到这可能会有些迷茫, 刻蚀机的工作原理是什么?它突破有何意义?光刻机有何不同?

其实, 刻蚀机对于“中国芯”的研发来说,也是有着举足轻重的作用 ,刻蚀机和光刻机虽然仅仅一字之差,但是它们分别是芯片制造中两个关键流程所用到的设备。

总的来说, 光刻机就如同我们的车载导航,而刻蚀机则代表着我们的车辆 ,只要跟着导航走就能够安全到达指定地点。

随着3nm刻蚀机的问世,我国的国产芯片水平更上一层楼,同时 它的出现也让不少国人们看到了“中国芯”问世的希望。

但也有部分人表示, 有着高精度刻蚀机没有高精度光刻机,“中国芯”也难以得到实现 ,但事实真就是如此吗?

一直以来,光刻机都是生产高精度芯片的核心设备,而光刻机生产技术一直牢牢掌控在荷兰ASML公司手中,而ASML又因为与美国的协议无法对我国出口光刻机,导致我国半导体领域发展一直萎靡不振。

但是最近,我国最大的光刻机厂商上海微电子传来了好消息: 其公司自主研发的28纳米光刻机已经问世并且通过认证,预计在年底可以正式交付投入使用。

国产光刻机的问世也让许多人发出质疑, 国产光 科技 的工作效率和质量能和ASML公司的光刻机媲美吗?

值得一提的是, 上微电子所研发出的光刻机进度和ASML的DUV光刻机是一样的 ,而DUV光刻机在英特尔手中被用来制造出了10纳米芯片,台积电更是用DUV光刻机量产出了7纳米芯片。

这也就意味着, 我国只要时机成熟,完全可能由现如今的量产28纳米芯片技术跳跃到量产7纳米芯片技术。

除此之外,根据我国目前对于芯片的需求来看,28纳米的芯片已经能够满足大部分市场需求,而上 海微电子研发的这台28纳米光刻机更是让“中国芯”的实现更进一步。

如今看来,在 美国芯片禁令的影响 下,虽说 对于我国半导体事业虽说有一定影响 ,但与此同时 更加快了“中国芯”的发展进程 ,美国这一做法无疑是搬起石头砸自己的脚。

我国先后在 光刻胶、蚀刻机、光刻机 等领域取得突破,所以我国想要突破芯片国产化只是时间问题, 我国的半导体行业也正在飞速发展,等到我国打造出属于自己的芯片产业链,芯片禁令也将成为笑谈!

最后,对于美国在芯片上对我国进行打压的行为,你又有什么不同的看法呢?欢迎你们在评论区与零零柒进行探讨。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8332738.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存