在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。
像晶体二极管一样,半导体激光器也以材料的p-n结特性为基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。 早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。
半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。
光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。
20世纪60年代初期的半导体激光器是同质结型激光器,它是在一种材料上制作的pn结二极管在正向大电流注人下,电子不断地向p区注人,空穴不断地向n区注人.于是,在原来的pn结耗尽区内实现了载流子分布的反转,由于电子的迁移速度比空穴的迁移速度快,在有源区发生辐射、复合,发射出荧光,在一定的条件下发生激光,这是一种只能以脉冲形式工作的半导体激光器。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAlAs所组成,最先出现的是单异质结构激光器(1969年).单异质结注人型激光器(SHLD)是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激光器仍不能在室温下连续工作。
1970年,实现了激光波长为9000&Aring:室温连续工作的双异质结GaAs-GaAlAs(砷化镓一镓铝砷)激光器。双异质结激光器(DHL)的诞生使可用波段不断拓宽,线宽和调谐性能逐步提高。其结构的特点是在P型和n型材料之间生长了仅有0. 2 Eam厚,不掺杂的,具有较窄能隙材料的一个薄层,因此注人的载流子被限制在该区域内(有源区),因而注人较少的电流就可以实现载流子数的反转。在半导体激光器件中,比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs二极管激光器。
随着异质结激光器的研究发展,人们想到如果将超薄膜(<20nm)的半导体层作为激光器的激括层,以致于能够产生量子效应,结果会是怎么样?再加之由于MBE,MOCVD技术的成就。于是,在1978年出现了世界上第一只半导体量子阱激光器(QWL),它大幅度地提高了半导体激光器的各种性能.后来,又由于MOCVD,MBE生长技术的成熟,能生长出高质量超精细薄层材料,之后,便成功地研制出了性能更加良好的量子阱激光器,量子阱半导体激光器与双异质结(DH)激光器相比,具有阑值电流低、输出功率高,频率响应好,光谱线窄和温度稳定性好和较高的电光转换效率等许多优点。
QWL在结构上的特点是它的有源区是由多个或单个阱宽约为100人的势阱所组成,由于势阱宽度小于材料中电子的德布罗意波的波长,产生了量子效应,连续的能带分裂为子能级.因此,特别有利于载流子的有效填充,所需要的激射阅值电流特别低.半导体激光器的结构中应用的主要是单、多量子阱,单量子阱(SQW)激光器的结构基本上就是把普通双异质结(DH)激光器的有源层厚度做成数十nm以下的一种激光器,通常把势垒较厚以致于相邻势阱中电子波函数不发生交迭的周期结构称为多量子阱(MQW ).量子阱激光器单个输出功率现已大于1w,承受的功率密度已达l OMW/cm3以上)而为了得到更大的输出功率,通常可以把许多单个半导体激光器组合在一起形成半导体激光器列阵。因此,量子阱激光器当采用阵列式集成结构时,输出功率则可达到l00w以上.高功率半导体激光器(特别是阵列器件)飞速发展,已经推出的产品有连续输出功率5 W,10W,20W和30W的激光器阵列.脉冲工作的半导体激光器峰值输出功率50w. 120W和1500W的阵列也已经商品化.一个4. 5 cm x 9cm的二维阵列,其峰值输出功率已经超过45kW.峰值输出功率为350kW的二维阵列也已间世。 从20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器.另一类是以提高光功率为目的的功率型激光器.在泵浦固体激光器等应用的推动下,高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W以上,均可称之谓高功率半导体激光器)在20世纪90年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出已达到600W[61.如果从激光波段的被扩展的角度来看,先是红外半导体激光器,接着是670nm红光半导体激光器大量进入应用,接着,波长为650nm,635nm的问世,蓝绿光、蓝光半导体激光器也相继研制成功,10mw量级的紫光乃至紫外光半导体激光器,也在加紧研制中[a}为适应各种应用而发展起来的半导体激光器还有可调谐半导体激光器,电子束激励半导体激光器以及作为“集成光路”的最好光源的分布反馈激光器(DFB一LD),分布布喇格反射式激光器(DBR一LD)和集成双波导激光器.另外,还有高功率无铝激光器(从半导体激光器中除去铝,以获得更高输出功率,更长寿命和更低造价的管子)、中红外半导体激光器和量子级联激光器等等.其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出光束进行调制.分布反馈(DF)式半导体激光器是伴随光纤通信和集成光学回路的发展而出现的,它于1991年研制成功,分布反馈式半导体激光器完全实现了单纵模运作,在相干技术领域中又开辟了巨大的应用前景它是一种无腔行波激光器,激光振荡是由周期结构(或衍射光栅)形成光藕合提供的,不再由解理面构成的谐振腔来提供反馈,优点是易于获得单模单频输出,容易与纤维光缆、调制器等耦合,特别适宜作集成光路的光源。
单极性注入的半导体激光器是利用在导带内(或价带内)子能级间的热电子光跃迁以实现受激光发射,自然要使导带和价带内存在子能级或子能带,这就必须采用量子阱结构.单极性注入激光器能获得大的光功率输出,是一种商效率和超商速响应的半导体激光器,并对发展硅基激光器及短波激光器很有利.量子级联激光器的发明大大简化了在中红外到远红外这样宽波长范围内产生特定波长激光的途径.它只用同一种材料,根据层的厚度不同就能得到上述波长范围内的各种波长的激光.同传统半导体激光器相比,这种激光器不需冷却系统,可以在室温下稳定 *** 作.低维(量子线和量子点)激光器的研究发展也很快,日本okayama的GaInAsP/Inp长波长量子线(Qw+)激光器已做到9OkCW工作条件下Im =6.A,l =37A/cm2并有很高的量子效率.众多科研单位正在研制自组装量子点(QD)激光器,该QDLD已具有了高密度,高均匀性和高发射功率.由于实际需要,半导体激光器的发展主要是围绕着降低阔值电流密度、延长工作寿命、实现室温连续工作,以及获得单模、单频、窄线宽和发展各种不同激射波长的器件进行的。 20世纪90年代出现并特别值得一提的是面发射激光器(SEL),早在1977年,人们就提出了所谓的面发射激光器,并于1979年做出了第一个器件,1987年做出了用光泵浦的780nm的面发射激光器.1998年GaInAIP/GaA。面发射激光器在室温下达到亚毫安的网电流,8mW的输出功率和11%的转换效率[2)前面谈到的半导体激光器,从腔体结构上来说,不论是F一P(法布里一泊罗)腔或是DBR(分布布拉格反射式)腔,激光输出都是在水平方向,统称为水平腔结构.它们都是沿着衬底片的平行方向出光的.而面发射激光器却是在芯片上下表面镀上反射膜构成了垂直方向的F一P腔,光输出沿着垂直于衬底片的方向发出,垂直腔面发射半导体激光器(VCSELS)是一种新型的量子阱激光器,它的激射阔值电流低,输出光的方向性好,藕合效率高,通过阵列化分布能得到相当强的光功率输出,垂直腔面发射激光器已实现了工作温度最高达71℃。另外,垂直腔面发射激光器还具有两个不稳定的互相垂直的偏振横模输出,即x模和y模,对偏振开关和偏振双稳特性的研究也进入到了一个新阶段,人们可以通过改变光反馈、光电反馈、光注入、注入电流等等因素实现对偏振态的控制,在光开关和光逻辑器件领域获得新的进展。20世纪90年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展,且已考虑了在超并行光电子学中的多种应用.980mn,850nm和780nm的器件在光学系统中已经实用化.垂直腔面发射激光器已用于千兆位以太网的高速网络。为了满足21世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要在高速宽带LD、大功率ID,短波长LD,盆子线和量子点激光器、中红外LD等方面.在这些方面取得了一系列重大的成果。
一、中国的激光武器激光武器是所有新概念武器中最有可能用于实战的,它在未来战争中有举足轻重的作用!目前世界上以中美俄水平最高。中国在六十年代初的时候就开始对它进行重点研究,只可惜从七十年代到八十年代中期的这段时间里搁置了,从这以后截止到目前取得了很大进展!因为此类武器的研究属于国家高度机密,因此到底进展到何种程度我们很难知道。1965年西南技术物理研究所制成铝石榴石(Nd:YAG)激光晶体,翌年制成YAG激光器,1972年高重复频率调QYAG激光器研制成功。用于军用光纤通信的半导体激光器也在1960年代中期开始研制,20年内中国先後研发出C02激光器、氩离子激光器、环形激光器、稳频激光器、远红外激光等,并於1970年代中期开始量产用于陆军武器测距、d道测量、人造卫?星测距、大气激光通信、光纤通信、海军武器测距、陆空军武器导引等方面的系统。1974年王大珩率团出访美加介绍了大陆国产强激光装置已打出了中子,令人刮目相看,加国专家表示两国已处于同一水平。1986年上光所建成尖峰疽功率超过1012瓦的强脉冲激光试验装置,张爱萍上将将它命名为“神光”,使中国成为继美、苏、法、日之後拥有同类设备的国家。中国新一代飞杪级超短超强激光装置已在1996年由上海光机所研制成功,并通过验收,标志著中国的强激光技术又踏上一个新台阶。中国将在2000年以後在强激光武器领域有更大的进展,并初步具备量产化能力,届时中国可能有能力威胁在大陆近岸活动的美国“曙光女神”超高速战略侦察机。
二、中国空军CYAL-1A机载激光武器系统
依据发展和完善武装力量的最新理论,中国国防部现在对开发和装备新概念武器的重视程度愈发地高涨。这其中最为引入注目的便是大功率机载激光武器系统。目前,该项目由中国空军部负责全面领导,同时反导d防御局和601、603、chengdu 等希望获得军方订货的企业也直接参与了研制工作。
603负责制定建造机载激光武器的总体方案,并研发作战指挥系统和其他一系列相关的机载系统,安装激光武器部件,根据军方需求改装运输平台(运输机),同时还要对各个分系统进行整合。这其中,最重要的一个组件是射击控制系统。601负责研制合适的光学设备,光束控制系统,一系列的主、被动光电探测和目标跟踪系统,以及将强激光束准确引向目标的制导装置。xxx 主要负责研制可批量生产的兆瓦级氧-碘化学脉冲激光发射器。除此之外,该公司还将主持建造强力激光器的地面保障系统。为了实施机载激光武器系统的建造计划,中国军方将会组织开展一系列的科研和试验设计工作,对光电系统进行实验室和室外测试,并编制用于激光武器自动化控制的系统程序。中国专家认为,机载激光武器系统必须能够自主地发现、识别并摧毁400公里以内的来袭d道导d、巡航导d和各型战机。根据中国空军司令部的计划,装备有激光武器的飞机将主要用于在距离前线100公里远的安全区域执行巡逻任务,在夺取制空权后,其位置还会向更接近前线的地方移动。据中国空军测算,要保证在导d威胁区域的24小时巡逻和对敌方实施不间断的监视,至少需要装备5架配备有机载激光武器系统的新型飞机。中国现在的目标是,要在2009年组建一个由7架这种飞机组成的飞行中队。在和平时期,这些装备有激光武器的飞机将会被部署在中国本土的基地中,为了随时前往作战地区执行打击任务,这些保持飞机均将保持24小时战备状态。为了保证机载激光武器系统的作战效能,在这些常备基地中将会储存充足的航空油料和产生强激光束所需的化学试剂。据悉,在进行重新部署时,每架作战飞机有可能会携带多达20吨的化学试剂。其他的保障物资将会由军用运输机运往临时基地。每套机载激光武器系统包括:一架由波音Y8-600F改装而来大型固定翼飞机,一个由14个部件组成的红外波段强激光发生器,一套作战指挥系统,一个由多种主、被动光电探测和跟踪设备构成的射击控制系统,以及制导系统和一些保障设备。改装后的Y8-600F安装有4台CF6-80C2B1F型发动机或是RB 211-524 G(H)发动机。其一次地面加油后的巡航时间约为6小时。为了维持所需的战斗效能,同一巡逻区域将会部署两架作战飞机。除了上述的Y8-600F外,中国还研制了一种代号为YAL-1A的空中平台。与Y8相比,YAL-1A的机翼长度有所增加,货舱舱门也经过了加固。由于装备了激光武器系统,新机的外形也非常特别--机头整流罩被设计成了球形,其下方安装了发射装置。据中国空军介绍,YAL-1A上安装的用于瞄准聚焦的透镜直径到达了1.5米。
三、激光武器的出现对我军军事装备的影响:
1、激光武器将被大量用于各种类型的作战平台上,以抢占这作战领域的攻击制高点。
2、信息战将提升到前所未有的重要程度。激光武器具有无提前量极高速攻击能力,具有发现目标即等于击中目标的能力,一旦被发现,目标根本无法运用自身的机动能力摆脱激光武器的攻击。因此,一方面要求我方具有先敌发现的卓越侦察能力,另一方面要求自身的军事装备不被敌方发现,围绕这一点,我方的任务是:
A、 建立强大的CI4系统能力并有在敌方干扰、破坏下保持这一能力的能力;
B、 具有干扰、破坏敌方CI4系统的能力,电磁武器、微波武器的地位将大大提高;
C、大力加强自身军事装备全面隐形化的能力;
3、新材料的运用举足轻重,各国将拼命研究抵抗高温的材料,并将它运用于军事装备上。
4、在同等CI4系统能力下,传统攻击性武器,尤其是导d的威力将大减,导d的速度与激光相比太慢,其红外特征太明显,易为敌方的激光武器摧毁,近距离的、在地平线上(由武器视角看)起作用的、打击点目标的导d将被激光取代,导d的存在价值是A、对超地平线的目标起作用;B、对非点目标(具有相对广大的面和体目标)起作用。但是导d必须做到不被敌方发现。电磁炮相比导d来说速度很快,达到每秒30~50公里,是现有导d最快速度每秒10公里的3~5倍,敌方的反应速度被大大降低,而且电磁d头很小,发射时红外特征不明显,故隐身能力大大超越d道导d,一旦电磁炮技术成熟,将立即取代d道导d的地位。
――――据外电通讯社引述北京消息人士指出,――――
解放军最近在西部地区成功地运用激光武器拦截来袭的低空巡航导d。这项激光防御技术极可能成为中国发展自己的导d防御系统(TMD)的一个组成部分。消息并指出,这次激光实验是在青海与西藏高原进行,这一技术的成功运用显示出大陆目前已有能力使用武器拦截低空巡航导d。过往的反导d系统通常是以地对空导d在空中击落攻击导d,而激光系统则是利用激光摧毁导d的指引系统,使导d落地而不引起破坏。 此次激光武器试验是我国广大国防科研人员经数十年不懈努力取得的一项突破性成果,在试验过程中,激光发生器的最大瞬时功率达到惊人的XXXXX.XX兆瓦,持续发生功率也有XXXX.XX兆瓦,光束持续照射时间达到XXXX秒,目标跟踪、调校装置的精度也完全达到了试验设计要求,仅用X秒便捕获了远在数千公里目标区飞行的导d,照射0.X秒后直接引爆,试验结果是振奋人心的!
光电信息技术是由光学、光电子、微电子等技术结合而成的多学科综合技术,涉及光信息的辐射、传输、探测以及光电信息的转换、存储、处理与显示等众多的内容。光电信息技术广泛应用于国民经济和国防建设的各行各业。近年来,随着光电信息技术产业的迅速发展,对从业人员和人才的需求逐年增多,因而对光电信息技术基本知识的需求量也在增加。
摘要 :21世纪是高速发展的信息时代,在这个飞速发展的时代中,光电信息功能得到了前所未有的发展,它在信息的产生,信息的存储以及信息的传输方面扮演着越来越不可或缺的角色。本文就半导体光电 信息功能的研究进展做出了简要分析,希望能对半导体光电信息功能材料的普及发挥作用。
关键词 :半导体研究与创新光电信息功能材料
前言
从远古到现代,从石器时代到如今的信息时代,历史的发展表明信息科学技术发展的先导和基础是半导体信息功能材料的进步,伴随着时代发展的特征,我们可以很容易的分析出,光电信息功能材料在方方面面深刻的影响着人类的生产和生活方式。现如今,随着光电信息功能材料的不断普及以及各行各业的的综合应用,其技术得到了光速的更新,例如其信息的存储已不再受低级别的限制,其存储量已被提高到KT级别,当然为了使之更好地适应社会,发挥出更大的作用,生产商与使用者对光电信息功能材料的研究与创新从未停止。光电信息功能材料的发展,同样也与国家生产力的发展有着密切的联系,它是国家经济发展的根本保障之一。对于目前正处在快速发展中的我国来说,大力发展半导体光电信息功能材料十分必要。
一、半导体光电信息材料简述
科学技术之所以得到不断发展的原因之一,便是有着信息研究材料的支持,人类对不同材料的研究与创新,是科学技术飞速发展,科学规律不断修正完善的基础。20世纪60~70年代,光导纤维材料和以砷化镓为基础的半导体激光器的发明,是人们进入了光纤通信,高速、宽带信息网络的时代。半导体光电材料――半导体是一种介于绝缘体导体之间的材料,半导体光电材料可以将光能转化为电能,同样也可以将电能转化为光能,并且可以处理加工和扩大光电信号。在当今社会,其应用正在逐步得到普及。半导体信息光电材料,对于我们来说并不陌生,其存在于我们的日常生活中,并且无时无刻的不在影响着我们,所以我们应正确的认识半导体信息光电材料,并且可以为半导体光电信息材料的发展贡献出自己的力量。
二、半导体光电信息材料研究的必要性
2.1 电子材料研究的意义
量子论为人们研究电子在原子中的运动规律提供了重要依据,其主要作用是揭示了原子最外层电子的运动规律方面,正是由于此方面研究取得了初步的进展,从而极大地促进了有色合金,不锈钢等金属材料的发现于研究。此外,半导体材料的开发,是得电子信息技术得大了极大地发展,并且逐步兴盛起来,于是出现了我们现在正在普遍应用的采用电子学器件小型化及电子回路集成化等科学技术制造而成的电器,极大地方便了我们的生活。
2.2 光学材料研究的意义
70年代光纤技术的发展,又引起了一轮新的技术浪潮,光学材料的研究正是在此时得到了大力发展,光学材料的研究极大地促进了光纤技术的进步,进而光纤技术的迅速发展,又带动了信息技术的革新,这使得研究材料的范围逐步的被扩大。于是,多媒体电能与光纤通信技术二者逐渐的结合起来,综合应用,从而极大地提高了网络技术的发展速度,大容量的存储,大范围的交流与传输通道,在很大程度上减少了时间与空间对多媒体信息交流的限制。
2.3 技术兴国的意义
在当前信息高能时代,发展对半导体光电信息的研究,在大的方面,能在很大的程度上,帮助我国提高科技水平,进而提高国际地位,争取在国际科技方面的话语权,在小的具体方面,它能帮助政府改善人民生活水平,提高人民生活质量,因此不管于大于小,发展对半导体光电信息功能材料的研究十分必要。
三、半导体光电信息材料研究研究进展
虽然当代国际信息技术水平在不断的发展,各国的科技水平都在提高,但是相对于国际水平或者其他发达国家来说,我国在半导体光电信息材料的研究方面还是相对落后的。我国在其功能材料的研究方面的问题主要有以下几个方面
3.1 科技水平低技术发展受到阻碍
我国科技水平相对于国际科技水平来说相对落后。我国科技发展方面存在的主要问题是发展滞缓,与国际脱节,更新换代慢。然而,科技水平的高低对于半导体光电信息材料的研究起着决定性的.作用,所以要想更好地促进半导体光电信息材料的发展,我国首先需要做的便是努力提高科技发展水平,紧跟国际科技发展的步伐。提高自身的科技水平,为半导体光电信息功能材料的研究提供强大的科技后盾。
3.2 技术型人才需予以增加
受我国应试教育的影响,我国高校培养出的人才过于依赖理论,缺少创新意识。然而,半导体光电信息功能材料的研究需要的不仅仅是拥有渊博理论知识的人,其更需要的是拥有灵活大脑,创新意识的人才。因此,我国应改进相关的教育政策制度,鼓励高校培养出更多拥有创新精神、灵活头脑的人。同时,我国在进行技术型人才培养方面要注重其专业性的提高,注重专业素质的培养。从而让更多的具有专业型的人才满足社会需要,满足半导体光电信息材料研究的需要。
3.3 政策缺失
现阶段,处于发展中状态的我国在半导体光电信息材料研究中,各方面政策制度还不够完善,比如在半导体光电信息材料的研究方面,国家并没有明确地提出相应的鼓励措施促进此方面技术的发展。因此,现在国家需要作出努力的便是组织相关部门,制定相关奖励政策,来促进半导体光电信息材料的研究。政策的制定需要立足于我国的现实和实际,相关部门要对半导体光电信息材料进行仔细研究,通过政策的制定很好的指导其发展和拓新。
四、结语
从上文中可以我们可以看出,在当代信息技术高速发展的时期,半导体光电信息功能资料的研究,对一国的生产力发展,经济进步,起着重要的决定性作用,半导体光电信息功能材料普遍存在于一国人民的日常生活当中,每一个人都应当成为半导体光电信息材料研究的推动者,只有全民努力,其材料研究才能得到长足发展。
参考文献:
[1]赵涵斐.几种光电信息功能材料的研究进展[J].计算机光盘软件与应用,2014(06):150+152.
[2]爱孟斯坦.光电信息功能材料与量子物理研究[J].信息与电脑(理论版),2014(02):40-41.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)