学号:21011110234
学院:通信工程学院
【嵌牛导读】:随着人工智能技术的不断发展,智能机器人领域也得到了空前的发展。尤其是深度神经网络广泛应用于视觉系统中后,取得了许多很明显的成效。对于自主移动机器人来说,视觉系统有着十分重要的作用,而图像分割技术更是在这个系统中担任着十分重要的角色。传统的图像分割技术基本上已经能够将图像的前景和后景分隔开来,但是近年来随着深度学习算法的发展,人们开始将其应用到图像分割中,提出了很多分割网络,也达到了很好的分割效果。在实现图像分割的基础上,人们还使得分割具有了语义类别和标签,就是现在的语义分割。本文在介绍了语义分割的基础上又引出了新的任务分割场景,实例分割和全景分割。并且介绍了最近研究的热点三维点云的语义分割问题,阐述了其实现的必要性。
【嵌牛鼻子】智能机器人,图像分割、语义分割、计算机视觉
【嵌牛提问】图像分割技术的传统常见方法
【嵌牛正文】
一、引言
计算机视觉,即computer vision,就是通过计算机来模拟人的视觉工作原理,来获取和完成一系列图像信息处理的机器。计算机视觉属于机器学习在视觉领域的应用,是一个多学科交叉的研究领域,其涉及数学、物理、生物、计算机工程等多个学科。
计算机视觉的主要应用有无人驾驶、人脸识别、无人安防、车辆车牌识别、智能传图、3D重构、VR/AR、智能拍照、医学图像处理、无人机、工业检测等。人驾驶又称自动驾驶,是目前人工智能领域一个比较重要的研究方向,让汽车可以进行自主驾驶,或者辅助驾驶员驾驶,提升驾驶 *** 作的安全性。人脸识别技术目前已经研究得相对比较成熟,并在很多地方得到了应用,且人脸识别准确率目前已经高于人眼的识别准确率。安防一直是我国比较重视的问题,也是人们特别重视的问题,在很多重要地点都安排有巡警巡查,在居民小区以及公司一般也都有保安巡查来确保安全。车辆车牌识别目前已经是一种非诚成熟的技术了,高速路上的违章检测,车流分析,安全带识别,智能红绿灯,还有停车场的车辆身份识别等都用到了车辆车牌识别。3D重构之前在工业领域应用比较多,可以用于对三维物体进行建模,方便测量出物体的各种参数,或者对物体进行简单复制。计算机视觉还有很多应用,随着技术的发展,应用领域也会越来越多。在工业领域的应用,在机器人技术方面的应用等。
对于传统的图像分割过程,通常可以分为5个步骤,即特征感知、图像预处理、特征提取、特征筛选和推理预测与识别。通过研究发现,在视觉的早期的发展过程中,人们对于图像中的特征并没有表现出足够的关注。且传统的分割过程是把特征提取和分类分开来做的,等到需要输出结果的时候再结合到一起,可想而知其实现的困难程度。
在深度学习算法出来之后,卷积神经网络被广泛应用于计算机视觉技术中,也因此衍生出了很多的研究方向。深度学习主要是以特征为基础来进行比对,如在人脸识别方面,使用卷积神经网络分别对两张人脸进行不同位置的特征提取,然后再进行相互比对,最后得到比对结果。目前的计算机视觉的主要研究方向有图像分类、目标检测、图像分割、目标跟踪、图像滤波与降噪、图像增强、风格化、三维重建、图像检索、GAN等。本文主要是针对图像分割这一领域,进行简要的概述。
图像分割技术是计算机视觉领域的个重要的研究方向,是图像语义理解的重要一环。图像分割是指将图像分成若干具有相似性质的区域的过程,从数学角度来看,图像分割是将图像划分成互不相交的区域的过程。近些年来随着深度学习技术的逐步深入,图像分割技术有了突飞猛进的发展,该技术相关的场景物体分割、人体前背景分割、人脸人体Parsing、三维重建等技术已经在无人驾驶、增强现实、安防监控等行业都得到广泛的应用。
二、发展现状
近来已经有很多学者将图像分割技术应用到移动机器人的控制中,能够做到在机器人运动的同时定位、构建地图并分割出不同的前景和后景,使视觉系统扫描到的图像具有语义信息。并有学者也致力于分割得更为准确和精细,不仅能够做到区分不同类的物体,也能够实现对同类的不同物体的分类,甚至可以做到在此基础上加上对背景的分割。由于我们生活的世界是三维空间,还有学者将图像场景还原到三维中,然后使用相关方法对整个三维场景进行分割。作为计算机视觉的研究中的一个较为经典的难题,图像分割这一领域也越来越被人们所关注。
首先是传统的图像分割方法。在传统分割方面,人们使用数字图像处理、拓扑学、数学等方面的知识来进行图像分割。虽然现在的算力逐渐增加且深度学习不断发展,一些传统的分割方法所取得的效果不如深度学习,但是其分割的思想仍有很多值得我们去学习的。
第一种方法是基于阈值的图像分割方法。这种方法的核心思想是想根据图像的灰度特征来给出一个或多个灰度阈值,将此阈值作为一个标准值与图像中的每个像素逐一进行比较。很容易想到,通过这个逐一比较过程能够得到两类结果,一类是灰度值大于阈值的像素点集,另一类是灰度值小于阈值的像素点集,从而很自然地将图像进行了分割。所以,不难发现,此方法的最关键的一步就是按照一定的准则函数来得到最佳灰度阈值,这样才能够得到合适的分类结果。值得一提的是,如果图像中需要分割的目标和背景分别占据了不同的灰度值甚至是不同的等级,那使用这种方法会得到很好的效果。并且,假如对于一张图像的处理,我们只需要设定一个阈值时,可以将其称为单阈值分割。但是图像中如果不止一个目标,即有多个目标需要进行提取的时候,单一阈值分割就无法做到将它们都分割开来,此时应选取多个阈值对其进行处理,这个分割的过程为多阈值分割。总的来说,阈值分割法有着其独特的特点,其计算简单、效率较高。但是,由于这种方法只考虑的是单个像素的灰度值及其特征,而完全忽略了空间特征,这也就导致了其对噪声比较敏感且鲁棒性不高。
第二种方法是基于区域的图像分割方法。这种方法具有两种基本形式:一种是区域生长,这种分割方法是从单个像素出发,逐渐将相似的区域进行合并,最终得到需要的区域。另一种方法是直接从图像的全局出发,一点一点逐步切割至所需要的区域。区域生长指的是,给定一组种子像素,其分别代表了不同的生长区域,然后让这些种子像素逐渐合并邻域里符合条件的像素点。如果有新的像素点添加进来,同样把它们作为种子像素来处理。
区域分裂合并的分割过程可以说是区域生长的逆过程,这种方法是从图像的全局出发通过不断分裂得到各个子区域,然后提取目标的过程。此外,在此过程中,还需要合并前景区域。
在区域分割方法中还有一种分水岭算法。受启发于分水岭的构成,这种分割方法将图像看作是测地学上的拓扑地貌,这样图像中每一个像素点对应的海拔高度可以用该点的灰度值来表示。分水岭的形成过程实际上可以通过模拟浸入过程来实现。具体做法是,在每个局部极小值的表面都刺穿一个小孔,然后把模型慢慢浸入水中,随着水慢慢浸入其中,分水岭就随之形成了。
第三种方法是基于边缘检测的分割方法。边缘检测的思想就是试图通过检测不同物体的边缘来将图像分割开来,这种方法是人们最先想到的也是研究最多的方法之一。如果我们将图片从空间域变换到频率域中去,其中物体的边缘部分就对应着高频部分,很容易就能够找到边缘信息,因此也使得分割问题变得容易。边缘检测的方法能够实现快而且准确的定位,但是其不能保证边缘的连续性和封闭性,且当一幅图像的细节信息过多时,其就会在边缘处产生大量的细碎边缘,在形成完整的分割区域时就会有缺陷。
第四种图像分割方法结合了特定的工具。这里所说的特定工具是各种图像处理工具以及算法等,随着图像分割研究工作的深入,很多学者开始将一些图像处理的工具和一些算法应用到此工作中,并取得了不错的结果。小波变换在数字图像处理中发挥着很重要的作用,它能够将时域和频域统一起来研究信号。尤其是在图像边缘检测方面,小波变换能够检测二元函数的局部突变能力。其次是基于遗传算法的图像分割,遗传算法主要借鉴了生物界自然选择和自然遗传机制的随机化搜索方法。其模拟了由基因序列控制的生物群体的进化过程,其擅长于全局搜索,但是局部搜多能力不足。将遗传算法应用到图像处理中也是当前研究的一个热点问题,在此选择这种方法的主要原因是遗传算法具有快速的随机搜索能力,而且其搜索能力与问题的领域没有任何关系。
除此之外,还有基于主动轮廓模型的分割方法,这种方法具有统一的开放式的描述形式,为图像分割技术的研究和创新提供了理想的框架。此方法也是对边缘信息进行检测的一种方法,主要是在给定图像中利用曲线演化来检测目标。
1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久, 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。 半导体的这四个效应,(jianxia霍尔效应的余绩——四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。
半导体于室温时电导率约在10ˉ10~10000/Ω·cm之间,纯净的半导体温度升高时电导率按指数上升。半导体材料有很多种,按化学成分可分为元素半导体和化合物半导体两大类。除上述晶态半导体外,还有非晶态的有机物半导体等和本征半导体。
1982年,江苏无锡的江南无线电器材厂(742厂)IC生产线建成验收投产,这是一条从日本东芝公司全面引进彩色和黑白电视机集成电路生产线,不仅拥有部封装,而且有3英寸全新工艺设备的芯片制造线,不但引进了设备和净化厂房及动力设备等“硬件”,而且还引进了制造工艺技术“软件”。这是中国第一次从国外引进集成电路技术。第一期742厂共投资2.7亿元(6600万美元),建设目标是月投10000片3英寸硅片的生产能力,年产2648万块IC成品,产品为双极型消费类线性电路,包括电视机电路和音响电路。到1984年达产,产量达到3000万块,成为中国技术先进、规模最大,具有工业化大生产的专业化工厂。 1982年10月,国务院为了加强全国计算机和大规模集成电路的领导,成立了以万里副总理为组长的“电子计算机和大规模集成电路领导小组”,制定了中国IC发展规划,提出“六五”期间要对半导体工业进行技术改造。 1983年,针对当时多头引进,重复布点的情况,国务院大规模集成电路领导小组提出“治散治乱”,集成电路要“建立南北两个基地和一个点”的发展战略,南方基地主要指上海、江苏和浙江,北方基地主要指北京、天津和沈阳,一个点指西安,主要为航天配套。
1986年,电子部厦门集成电路发展战略研讨会,提出“七五”期间我国集成电路技术“531”发展战略,即普及推广5微米技术,开发3微米技术,进行1微米技术科技攻关。 1988年,871厂绍兴分厂,改名为华越微电子有限公司。 1988年9月,上无十四厂在技术引进项目,建了新厂房的基础上,成立了中外合资公司――上海贝岭微电子制造有限公司。 1988年,在上海元件五厂、上无七厂和上无十九厂联合搞技术引进项目的基础上,组建成中外合资公司――上海飞利浦半导体公司(现在的上海先进)。 1989年2月,机电部在无锡召开“八五”集成电路发展战略研讨会,提出了“加快基地建设,形成规模生产,注重发展专用电路,加强科研和支持条件,振兴集成电路产业”的发展战略。 1989年8月8日,742厂和永川半导体研究所无锡分所合并成立了中国华晶电子集团公司。
1990年10月,国家计委和机电部在北京联合召开了有关领导和专家参加的座谈会,并向党中央进行了汇报,决定实施九O八工程。 1991年,首都钢铁公司和日本NEC公司成立中外合资公司――首钢NEC电子有限公司。 1995年,电子部提出“九五”集成电路发展战略:以市场为导向,以CAD为突破口,产学研用相结合,以我为主,开展国际合作,强化投资,加强重点工程和技术创新能力的建设,促进集成电路产业进入良性循环。 1995年10月,电子部和国家外专局在北京联合召开国内外专家座谈会,献计献策,加速我国集成电路产业发展。11月,电子部向国务院做了专题汇报,确定实施九0九工程。 1997年7月17日,由上海华虹集团与日本NEC公司合资组建的上海华虹NEC电子有限公司组建,总投资为12亿美元,注册资金7亿美元,华虹NEC主要承担“九0九”工程超大规模集成电路芯片生产线项目建设。 1998年1月,华晶与上华合作生产MOS圆片合约签定,有效期四年,华晶芯片生产线开始承接上华公司来料加工业务。 1998年1月18日,“九0八” 主体工程华晶项目通过对外合同验收,这条从朗讯科技公司引进的0.9微米的生产线已经具备了月投6000片6英寸圆片的生产能力。 1998年1月,中国华大集成电路设计中心向国内外用户推出了熊猫2000系统,这是我国自主开发的一套EDA系统,可以满足亚微米和深亚微米工艺需要,可处理规模达百万门级,支持高层次设计。 1998年2月,韶光与群立在长沙签订LSI合资项目,投资额达2.4亿元,合资建设大规模集成电路(LSI)微封装,将形成封装、测试集成电路5200万块的生产能力。 1998年2月28日,我国第一条8英寸硅单晶抛光片生产线建成投产,这个项目是在北京有色金属研究总院半导体材料国家工程研究中心进行的。 1998年3月16日,北京华虹集成电路设计有限责任公司与日本NEC株式会社在北京长城-饭店举行北京华虹NEC集成电路设计公司合资合同签字仪式,新成立的合资公司其设计能力为每年约200个集成电路品种,并为华虹NEC生产线每年提供8英寸硅片两万片的加工订单。 1998年4月,集成电路“九0八”工程九个产品设计开发中心项目验收授牌,这九个设计中心为信息产业部电子第十五研究所、信息产业部电子第五下四研究所、上海集成电路设计公司、深圳先科设计中心、杭州东方设计中心、广东专用电路设计中心、兵器第二一四研究所、北京机械工业自动化研究所和航天工业771研究所。这些设计中心是与华晶六英寸生产线项目配套建设的。 1998年6月,上海华虹NEC九0九二期工程启动。 1998年6月12日,深港超大规模集成电路项目一期工程――后工序生产线及设计中心在深圳赛意法微电子有限公司正式投产,其集成电路封装测试的年生产能力由原设计的3.18亿块提高到目前的7.3亿块,并将扩展的10亿块的水平。 1998年10月,华越集成电路引进的日本富士通设备和技术的生产线开始验收试制投 片,-该生产线以双极工艺为主、兼顾Bi-CMOS工艺、2微米技术水平、年投5英寸硅片15万片、年产各类集成电路芯片1亿只能力的前道工序生产线及动力配套系统。 1998年3月,由西安交通大学开元集团微电子科技有限公司自行设计开发的我国第一个-CMOS微型彩色摄像芯片开发成功,我国视觉芯片设计开发工作取得的一项可喜的成绩。 1999年2月23日,上海华虹NEC电子有限公司建成试投片,工艺技术档次从计划中的0.5微米提升到了0.35微米,主导产品64M同步动态存储器(S-DRAM)。这条生产线的建-成投产标志着我国从此有了自己的深亚微米超大规模集成电路芯片生产线。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)