电动汽车空调制热系统与传统燃油车相比有了很大的不同,传统燃油车制暖只需利用发动机工作产生的余热即可满足整车制热的需求。可对于电动汽车而言由于没有了发动机能够提供的热源,电动汽车的制热就成了其面临的一大难题,无论从安全、能源和制热效果上都受到很大的制约。小编将重点介绍以下几种电动汽车空调系统的制热模式。
1.半导体制热系统
半导体制热系统别名温差电制热或电子制热,原理是热电偶对为其基本器件,将一只N 型半导体和P 型半导体接连成热电偶,直流电通上后,于接口处产生出热量和温差的转移,在电路上并联起数对半导体热点偶对,如果是制冷则为串联。这样就构成一个很典型的制热热电堆,借助热交换器等一系列传热途径,让热电堆的热端不停的细热,并且维持一定的温度,而将热电堆的冷端处于工作环境中去散发降温,这便是半导体制热的原理。半导体空调系统可以实现从零上90 摄氏度到零下130 摄氏度,但这并不意味这它是没有缺陷的,对于电动汽车而言,由于存在热电材料优质系数低以及制冷性能不理想等因素的影响,使得半导体制冷系统不能满足电动汽车节能高效的要求,所以该技术在未来依然会是人们研究改良的方向。
2.热泵型空调系统制热
热泵型空调系统是在传统燃油机车上进行改造的,压缩机采用永磁直流无刷电机直接来驱动,其工作原理见图4。该系统和普通热泵型空调系统是一样的,由于应用在电动汽车上,所以压缩机等主要零部件具有一定的特殊性。热泵型空调系统的最大优点是它的制冷制热效率高。
热泵技术通过改变系统制冷剂的流向,从外部的低温热源吸取热量,向车内的高温热源散热,从而达到使车厢内温度升到以达到理想温度环境的效果。热泵的热力学经济性方面比消耗电能的系统要好很多,目前在家用空调方面应用很广,在汽车空调应用方面依然有待深入。热泵型空调技术的最大软肋是在低温环境下的制热问题,尤其是在一些寒冷地区的应用会是将来主要研究课题之一。但依靠着高效的制热制冷优势,加上其和不同类型汽车车体都较吻合的优点,应该说热泵型空调系统是未来电动汽车空调发展的主要趋势。
3.驻车加热器制热
驻车加热器制热方式是遥控器或者定时器发送给ECU 一个启动信号,从油箱由计量油泵泵油并且以脉冲形式将燃油喷到燃烧室,点火器将其加热到900 摄氏度左右,使细小油滴气化,鼓风机吸入空气,和汽油混合点燃,热能被传送给发动机冷却液,水泵推动冷却液进入蒸发箱散热器循环散热,鼓风机把车内冷空气吸走,将被加热的空气鼓入车厢内,已达到温度上升至理想温度的效果。
对于功率半导体器件,芯片焊接材料必须在这些器件工作的较高温度下能够保持可靠焊接,同时为工作中的器件提供一个高导热的散热路径。如果芯片粘接材料能够承受比高铅焊料更高的工作温度,这将意味着它在宽禁带半导体器件如SiC功率二极管和晶体管应用中会有优势。由于更高的热导率、更高的击穿电压和更高的饱和载流子速度,SiC器件的功率密度可以实现大幅度增长。更宽禁带的SiC允许更高的结温,而不影响性能[1]。高铅焊料的传统冶金替代品如金锡共晶合金,有较高的作业温度,超过了半导体可以容忍的性能不退化温度;另一种替代品为填银的环氧树脂,但是这种环氧树脂又存在热导率不够的问题,不能保持芯片以最高效率工作所需的温度[1,2]。纳米颗粒具有较高的表面活性,这意味着将会有比块状银熔点961.8 ℃更低的熔点(图1),例如2.4 nm银子熔点为350 ℃[3]。这样的粒子外层在较低的温度下有类似于熔融状态的移动性,使它们在远低于传统的银粉烧结所需温度下,通过润湿和扩散彼此结合或与其他兼容材料相结合。虽然烧结过程中施加外部压力增加了粒子的接触面积,但是在纳米银粒子烧结中这并不是必须的。即使温度低于回流高铅焊料的温度,银表面的移动原子所产生的毛细管作用力也足以保证相邻粒子接触的润湿力。由于银比焊料具有更高的强度,实现本应用中所需的强度不要求高密度银。事实上,多孔结构较低的d性模量有利于减小热循环过程中由于热膨胀系数差异产生的芯片应力。当正确配制时,基于纳米银粒子的焊膏可在高铅焊料所要求的类似温度和更低的温度范围内形成可靠焊点。纳米银将高活性的纳米银粒子递送到焊接区域,并使其结合形成一个满足电气和热导率要求的结构强健的焊点,还是有许多挑战的。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)