深思熟虑了一下,钙钛矿不是perovskite么?那个深居地下的东西,怎么也会出来晒太阳?于是乎,我在度娘里搜了一下“钙钛矿”。发现除去没有必要的广告(广告也是太阳能电池的),“钙钛矿太阳能电池(太阳能电池类型名)-百度百科”紧随其后,还有各种相关的科研报道。
那深居地下(地球科学中)的钙钛矿和钙钛矿太阳能电池有什么区别呢?
地球科学中的钙钛矿
在地球科学领域,钙钛矿是一种名副其实的矿物。1839, 德国科学家Gustav Rose在俄国考察中在乌拉尔山脉发现元素组成为CaTiO 3 矿物,并将其命名为"perovskite”,以纪念同名的俄国矿物学家Lev Alekseyevich von Perovski(他提议创建俄罗斯地理学会)。但是对于地幔中存在钙钛矿结构型的硅酸盐的认识直到1962年才首次提出,到了1970年代后期,科学家提出,地幔中约660 km处的地震不连续性代表了从具有尖晶石结构的橄榄石成分矿物(林伍德石)到具有铁镁橄榄石成分的钙钛矿的相变。钙钛矿结构型的硅酸盐在地球表面不稳定,主要存在于地幔的下部660km至2900km。但是完整的钙钛矿晶体也可能在陨石坑中发现,陨石冲击地表时产生的超高压力能促使地表矿物相变成钙钛矿。
不过在2014年地球深部的钙钛矿有了新的名字:布里奇曼石(bridgmanite,为了纪念在1946年获得诺贝尔物理学奖的物理学家Percy Williams Bridgman对于高压物理学领域所做出的突出贡献)。
布里奇曼石(Bridgmanite)深居下地幔,化学式为Mg1-xFexSiO3,具有钙钛矿结构, 它属于正交晶系, 是下地幔最主要的矿物。Tschauner等人2014年在陨石发现了钙钛矿结构型的硅酸盐的天然样品, 而后将它命名为布里奇曼石(Bridgmanite),其在下地幔的含量约占80%(pyrolite成分模型,地幔模型之一)或者更高(piclogite成分模型,地幔模型之一)。
下地幔的另外一个重要的矿物是含钙-钙钛矿,它的质量百分比约为7%,它是下地幔钙(Ca)的主要存在形式。在地幔的高温下,它最有可能以立方钙钛矿相存在,跟许多著名的功能钙钛矿材料如BaTiO 3 、PbTiO 3 等铁电材料一样。
钙钛矿太阳能电池
钙钛矿型太阳能电池(perovskite solar cells),是利用全固态 钙钛矿型 的有机金属卤化物半导体作为 吸光材料 的太阳能电池,属于第三代太阳能电池,也称作新概念太阳能电池。这种材料制备工艺简单,成本较低。以CH 3 NH 3 PbI 3 为例,将含有PbI 2 和CH 3 NH 3 I的溶液,在常温下混合并进一步旋涂即可获得均匀的结晶薄膜。简单说,钙钛矿太阳能电池就是一种制作工艺简单,成本低廉,以钙钛矿结构作为吸光材料的太阳能电池。
钙钛矿材料的结构通式为ABX 3 ,其中A为有机阳离子,B为金属离子,X为卤素基团。该结构中,金属B原子位于立方晶胞体心处,卤素X原子位于立方体面心,有机阳离子A位于立方体顶点位置。相比于以共棱、共面形式连接的结构,钙钛矿结构更加稳定,有利于缺陷的扩散迁移。见图如下:
总结来讲,钙钛矿太阳能电池属于钙钛矿型材料,这类材料结构类似于钙钛矿,其通式为ABX 3 ,此类化合物最早被发现于钙钛矿石中的钛酸钙(CaTiO 3 ),因此而得名。到后来,钙钛矿并不单单特指这种钙钛复合氧化物,而用来泛指一系列具有ABX 3 化学式的化合物。所以钙钛矿太阳能电池既不含钙,也不含钛,更不是一种矿石,其应该叫钙钛矿型太阳能电池。
参考文献
[1]徐慧,朱建东. Bridgmanite(布氏岩)——地球上含量最丰富的矿物[J]. 资源环境与工程, 2014(28):763.
[2]吴忠庆,王文忠. 矿物高温高压下d性的第一性原理计算研究进展[J]. 中国科学:地球科学, 2016, 000(005):P.582-617.
[3]白宇冰,王秋莹,吕瑞涛,等. 钙钛矿太阳能电池研究进展[J]. 科学通报, 2016, 61(Z1):489.
[4]魏静,赵清,李恒,等. 钙钛矿太阳能电池:光伏领域的新希望[J]. 中国科学:技术科学, 2014, 44(8):801-821.
美编:ZYN
校对:张腾飞
2.2 按磷化膜的厚度分类按磷化膜厚度(磷化膜重)分,可分为次轻量级、轻量级、次重量级、重量级四种。次轻量级膜重仅0.1~1.0g/m2,一般是非晶相铁系磷化膜,仅用于漆前打底,特别是变形大工件的涂漆前打底效果很好。轻量级膜重1.1~4.5 g/m2,广泛应用于漆前打底,在防腐蚀和冷加工行业应用较少。次重量级磷化膜厚4.6~7.5 g/m2,由于膜重较大,膜较厚(一般>3μm),较少作为漆前打底(仅作为基本不变形的钢铁件漆前打底),可用于防腐蚀及冷加工减摩滑润。重量级膜重大于7.5 g/m2,不作为漆前打底用,广泛用于防腐蚀及冷加工。
2.3 按磷化处理温度划分
按处理温度可分为常温、低温、中温、高温四类。常温磷化就是不加温磷化。低温磷化一般处理温度30~45℃。中温磷化一般60~70℃。高温磷化一般大于80℃。温度划分法本身并不严格,有时还有亚中温、亚高温之法,随各人的意愿而定,但一般还是遵循上述划分法。
2.4 按促进剂类型分类
由于磷化促进剂主要只有那么几种,按促进剂的类型分有利于槽液的了解。根据促进剂类型大体可决定磷化处理温度,如NO3-促进剂主要就是中温磷化。促进剂主要分为:硝酸盐型、亚硝酸盐型、氯 酸盐型、有机氮化物型、钼酸盐型等主要类型。每一个促进剂类型又可与其它促进剂配套使用,有不少的分支系列。硝酸盐型包括:NO3-型,NO3-/NO2-(自生型)。氯酸盐型包括:ClO3-,ClO3-/ NO3-,ClO3-/ NO2-。亚硝酸盐包括:硝基胍R- NO2-/ ClO3-。钼酸盐型包括:MoO4-, MoO4-/ ClO3-, MoO4-/ NO3-。
磷化分类方法还有很多,如按材质可分为钢铁件、铝件、锌件以及混合件磷化等。
磷化(Ⅱ)——磷化前的预处理
一般情况下,磷化处理要求工件表面应是洁净的金属表面(二合一、三合一、四合一例外)。工件在磷化前必须进行除油脂、锈蚀物、氧化皮以及表面调整等预处理。特别是涂漆前打底用磷化还要求作表面调整,使金属表面具备一定的“活性”,才能获得均匀、细致、密实的磷化膜,达到提高漆膜附着力和耐腐蚀性的要求。因此,磷化前处理是获得高质量磷化膜的基础。
1 除油脂
除油脂的目的在于清除掉工件表面的油脂、油污。包括机械法、化学法两类。机械法主要是:手工擦刷、喷砂抛丸、火焰灼烧等。化学法主要:溶剂清洗、酸性清洗剂清洗、强碱液清洗,低碱性清洗剂清洗。以下介绍化学法除油脂工艺。
1.1 溶剂清洗
溶剂法除油脂,一般是用非易燃的卤代烃蒸气法或乳化法。最常见的是采用三氯乙烷、三氯乙烯、全氯乙烯蒸汽除油脂。蒸汽脱脂速度快,效率高,脱脂干净彻底,对各类油及脂的去除效果都非常好。在氯代烃中加入一定的乳化液,不管是浸泡还是喷淋效果都很好。由于氯代卤都有一定的毒性,汽化温度也较高,再者由于新型水基低碱性清洗剂的出现,溶剂蒸汽和乳液除油脂方法现在已经很少使用了。
1.2 酸性清洗剂清洗
酸性清洗剂除油脂是一种应用非常广泛的方法。它利用表面活性剂的乳化、润湿、渗透原理,并借助于酸腐蚀金属产生氢气的机械剥离作用,达到除油脂的目的。酸性清洗剂可在低温和中温下使用。低温一般只能除掉液态油,中温就可除掉油和脂,一般只适合于浸泡处理方式。酸性清洗剂主要由表面活性剂(如OP类非离子型活性剂、阴离子磺酸钠型)、普通无机酸、缓蚀剂三大部分组成。由于它兼备有除锈与除油脂双重功能,人们习惯称之为“二合一”处理液。
盐酸、硫酸酸基的清洗剂应用最为广泛,成本低,效率较高。但酸洗残留的Cl-、SO42-对工件的后腐蚀危害很大。而磷酸酸基没有腐蚀物残留的隐患,但磷酸成本较高,清洗效率低些。
对于锌件,铝件一般不采用酸性清洗剂清洗,特别锌件在酸中的腐蚀极快。
1.3强碱液清洗
强碱液除油脂是一种传统的有效方法。它是利用强碱对植物油的皂化反应,形成溶于水的皂化物达到除油脂的目的。纯粹的强碱液只能皂化除掉植物油脂而不能除掉矿物油脂。因此人们通过在强碱液中加入表面活性剂,一般是磺酸类阴离子活性剂,利用表面活性剂的乳化作用达到除矿物油的目的。强碱液除油脂的使用温度都较高,通常〉80℃。常用强碱液清洗配方与工艺如下:
氢氧化钠 5%~10%
硅酸钠 2%~8%
磷酸钠(或碳酸钠) 1%~10%
表面活性剂(磺酸类)2%~5%
处理温度 >80℃
处理时间 5~20min
处理方式浸泡、喷淋均可
强碱液除油脂需要较高温度,能耗大,对设备腐蚀性也大,并且材料成本并不算低,因此这种方法的应用正逐步减少。
1.4低碱性清洗液清洗
低碱性清洗液是当前应用最为广泛的一类除油脂剂。它的碱性低,一般pH值为9~12。对设备腐蚀较小,对工件表面状态破坏小,可在低温和中温下使用,除油脂效率较高。特别在喷淋方式使用时,除油脂效果特别好。低碱性清洗剂主要由无机低碱性助剂、表面活性剂、消泡剂等组成。无机型助剂主要是硅酸钠、三聚磷酸钠、磷酸钠、碳酸钠等。其作用是提供一定的碱度,有分散悬浮作用。可防止脱下来的油脂重新吸附在工件表面。表面活性剂主要采用非离子型与阴离子型,一般是聚氯乙烯OP类和磺酸盐型,它在除油脂过程中起主要的作用。在有特殊要求时还需要加入一些其它添加物,如喷淋时需要加入消泡剂,有时还加入表面调整剂,起到脱脂、表调双重功能。低碱性清洗剂已有很多商业化产品,如PA30-IM、PA30-SM、FC-C4328、Pyroclean442等。
一般常用的低碱性清洗液配方和工艺如下:
浸泡型 喷淋型
三聚磷酸钠 4~10g/l 4~10g/l
硅 酸 钠 0~10g/l 0~10g/l
碳 酸 钠 4~10g/l 4~10g/l
消 泡 剂 0 0.5~3.0g/l
表面调整剂 0~3 g/l 0~3 g/l
游 离 碱 度 5~20点 5~15点
处 理 温 度 常温~80℃ 40~70℃
处 理 时 间 5~20min 1.5~3.0min
浸泡型清洗剂主要应注意的是表面活性剂的浊点问题,当处理温度高于浊点时,表面活性剂析出上浮,使之失去脱脂能力,一般加入阴离子型活性剂即可解决。喷淋型清洗剂应加入足够的消泡剂,在喷淋时不产生泡沫尤为重要。
铝件、锌件清洗时,必须考虑到它们在碱性条件下的腐蚀问题,一般宜用接近中性的清洗剂。
2 酸洗
酸洗除锈、除氧化皮的方法是工业领域应用最为广泛的方法。利用酸对氧化物溶解以及腐蚀产生氢气的机械剥离作用达到除锈和除氧化皮的目的。酸洗中使用最为常见的是盐酸、硫酸、磷酸。硝酸由于在酸洗时产生有毒的二氧化氮气体,一般很少应用。盐酸酸洗适合在低温下使用,不宜超过45℃,使用浓度10%~45%,还应加入适量的酸雾抑制剂为宜。硫酸在低温下的酸洗速度很慢,宜在中温使用,温度50~80℃,使用浓度10%~25%。磷酸酸洗的优点是不会产生腐蚀性残留物(盐酸、硫酸酸洗后或多或少会有少会有Cl-、SO42-残留),比较安全,但磷酸的缺点是成本较高,酸洗速度较慢,一般使用浓度10%~40%,处理温度可常温到80℃。在酸洗工艺中,采用混合酸也是非常有效的方法,如盐酸-硫酸混合酸,磷酸-柠檬酸混合酸。
在酸洗除锈除氧化皮槽液中,必须加入适量的缓蚀剂。缓蚀剂的种类很多,选用也比较容易,它的作用是抑制金属腐蚀和防止“氢脆”。但酸洗“氢脆”敏感的工件时,缓蚀剂的选择应特别小心,因为某些缓蚀剂抑制二个氢原子变为氢分子的反应,即:2[H]→H2↑,使金属表面氢原子的浓度提高,增强了“氢脆”倾向。因此必须查阅有关腐蚀数据手册,或做“氢脆”试验,避免选用危险的缓蚀剂。
>3 表面调整
表面调整的目的,是促使磷化形成晶粒细致密实的磷化膜,以及提高磷化速度。表面调整剂主要有两类,一种是酸性表调剂,如草酸。另一种是胶体钛。两者的应用都非常普及,前者还兼备有除轻锈(工件运行过程中形成的“水锈”及“风锈”)的作用。在磷化前处理工艺中,是否选用表面调整工序和选用那一种表调剂都是由工艺与磷化膜的要求来决定的。一般原则是:涂漆前打底磷化、快速低温磷化需要表调。如果工件在进入磷化槽时,已经二次生锈,最好采用酸性表调,但酸性表调只适合于≥50℃的中温磷化。一般中温锌钙系磷化不表调也行。磷化前预处理工艺是:
除油脂——水洗——酸洗——水洗——中和——表调——磷化
除油除锈“二合一”——水洗——中和——表调——磷化
除油脂——水洗——表调——磷化
中和一般就是0.2%~1.0%纯碱水溶液。在有些工艺中对重油脂工件,还增加预除油脂工序。
磷化(Ⅲ)——磷化工艺(1)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)