1999年在完成了18个月的博士后研究后,杨培东与大约20所美国顶尖大学面谈,最终得到近10所大学的工作邀请,他选择了加州大学伯克利分校,年仅28岁时就成为加州大学伯克利分校化学系的助理教授,独立负责一个实验室的科研工作。 从加入伯克利的那年起,杨培东就以其出色的科研成果获得了一系列殊荣。沿着一个正确的方向作始创性的研究,是杨培东频频得奖的奥秘,他的小组在半导体纳米线方面的研究,一直处在领跑这个领域的地位。
纳米技术的前景被人们一致看好。2013年,世界各大公司纷纷为此项技术而斥资,几乎每一所名牌大学都以率先展开相关研究而自豪。学会如何制作纳米线这一纳米器件的关键,则成了摆在研究人员面前的一大热门课题。
顾名思义,纳米线又长又细,体积微小——大约只有人类头发宽度的万分之一。如今,研究人员能将纳米线的直径从5毫微米调整至几千毫微米,长度可达到几百微米。这种导线整合成较大的结构后,不仅可以制作激光器、晶体管和存储器阵列,就连类似猎犬嗅探器官的化学敏感结构也不在话下。为了研制纳米线,杨培东和他的同事利用特殊的小室,先在里面将黄金或其他金属的薄膜熔化,以形成纳米尺度的微滴。然后,向它们发射化学蒸气,使其分子分解。这些分子以短序列使熔化的纳米微滴过饱和后,便形成了纳米结晶。随着更多的蒸气在金属微滴上的分解,结晶就会像一棵树那样往上生长。
同时在数百万个金属微滴上进行这一 *** 作,使科学家有机会对大量的纳米线加以组织。杨培东“栽种”的氮化镓和氧化锌纳米线已长成大片的森林,它们能发射紫外线光,有助于“芯片上的实验室”迅速而廉价地分析医学、环境和其他取样。由于在生长过程中引进不同的蒸气,杨培东改变了纳米线的成分,使它形成硅和半导体硅锗的界面,其早期用途是对计算机芯片的冷却。此外,这类器件还有可能最终发展成为高效的能源,从汽车废热或太阳热量中产生电能。
当然,对如此细微的纳米线进行电极连接仍是一大难关,世界各地有100个研究小组正在进行攻关。
但纳米技术的应用前景实在诱人。杨培东告诉记者,他和其他四位科学家技术入股了一家纳米技术公司,他是公司科技顾问,并不直接参与经营管理。2013年,这家公司正致力于将纳米技术转化到实际应用中去,已获两轮投资,烧掉了1亿5千万美元,但风投公司还是乐此不疲。 5月12日,四川汶川大地震发生以后,杨培东更是每天关注电视新闻,灾区群众的安危与困难沉甸甸地压在他的心头。“旧金山和伯克利一湾之隔,都处在圣安德列斯断层上,属环太平洋地震带。1906年旧金山大地震后,那里的建筑都充分考虑了抗震设防要求,我工作的实验室就是建在巨大的轮子上的。”杨培东认为,四川的灾后重建,一定要多参考国外的成熟做法,提高建筑物的抗震能力。
和其他海外华人一起,他一次次参加向四川灾区捐款捐物的活动。“这次中国的抗震救灾工作信息透明,救援及时,在国际上广受好评。作为一名身在海外的中国人,我也为祖国自豪。”
醉心于探索美丽小世界的杨培东,与国内的同行,如清华大学、复旦大学和中国科技大学的研究人员保持着密切的交流。加入伯克利后,他平均每两年回中国访问一次。而中科院纳米所选定在苏州后,他回国的步伐更勤了,2013年六七月,就回来了两次。“其实,纳米所还只是一片空地的时候,我就来过苏州跟他们交流了”。杨培东说,以后在苏州的工作忙起来后,回来得肯定还会更频繁。2013年苏州城市大了,不自己开车总觉得不方便。“我还是中国公民,换国内的驾照应该不麻烦吧?”他问记者。 从苏州走出去的旅美科学家杨培东教授20年后回到家乡“打工”。7月22一早,这位国际顶尖材料学家走进他在中科院苏州纳米技术与纳米仿生研究所的办公室,开始了在这里的全新工作。
任教于美国加州大学伯克利分校化学系的杨培东教授,同时也是美国劳伦斯柏克莱国家实验室科学家。根据美国科学信息研究所的统计,从1997年至2007年的论文引用次数看,杨培东已是当之无愧的国际“纳米牛人”,其论文平均被引次数超过150次,是仅居其次的科学家的两倍,在全球材料科学家中列第一。
此番,杨培东教授应中科院苏州纳米技术与纳米仿生研究所之邀,出任该所客座教授,同时负责组建并领导一个国际合作实验室。22日一上班,他就立即翻阅起助手送来的一份“海归”博士的简历。杨培东教授告诉记者,此次他利用美国大学放暑假的时间回国,在苏州有难得的10多天“整块”工作时间。而亲自主持面试,为实验室“招兵买马”挑选人才,是他此次回国的工作任务之一。
在美国,杨培东教授在纳米导线方面的开创性研究,取得了令世界瞩目的成就,使一系列高技术设备显示出了广泛的应用前景,包括从微型发光二极管、激光器,到晶体管、太阳能板等广泛领域。而在苏州,这位1971年出生的青年科学家“另起炉灶”,研究方向瞄准了全新的纳米生物技术。
纳米技术是21世纪科技发展的热门前沿领域,作为业内的顶尖高手,杨培东教授是许多世界级科研机构的追逐对象。中学毕业后离开苏州求学、工作20年,这颗国际纳米界的明星升得再高,心中还是时常挂着家乡。“巧的是,苏州近年确立了国内纳米技术领域的核心地位,科技水平和产业环境领先全国,在这里正好可以发挥我的专业特长。”杨培东教授表示,今后他会中国、美国两头奔波。在美期间,将通过因特网遥控指挥这里的研究。
2011年,美国《科学》报道了加州大学伯克利分校纳米材料学家杨培东的杰出成就。这篇题为《青云直上》的文章写道,最精细的半导体导线使杨培东大奖不断,特别是美国国家科学基金会授予他的艾伦·沃特曼奖,把他的科研生涯推向了顶峰。
三星周四表示,它有望在本季度(即未来几周内)使用其 3GAE (早期 3 纳米级栅极全能)制造工艺开始大批量生产。该公告不仅标志着业界首个3nm级制造技术,也是第一个使用环栅场效应晶体管(GAAFET)的节点。
三星在财报说明中写道:“通过世界上首次大规模生产 GAA 3 纳米工艺来增强技术领先地位 。”(Exceed market growth by sustaining leadership in GAA process technology,adopt pricing strategies to ensure future investments, and raise the yield and portion of our advanced processe)
三星代工的 3GAE 工艺技术 是该公司首个使用 GAA 晶体管的工艺,三星官方将其称为多桥沟道场效应晶体管 (MBCFET)。
三星大约在三年前正式推出了其 3GAE 和 3GAP 节点。三星表示,该工艺将实现 30% 的性能提升、50% 的功耗降低以及高达 80% 的晶体管密度(包括逻辑和 SRAM 晶体管的混合)。不过,三星的性能和功耗的实际组合将如何发挥作用还有待观察。
理论上,与目前使用的 FinFET 相比,GAAFET 具有许多优势。在 GAA 晶体管中,沟道是水平的并且被栅极包围。GAA 沟道是使用外延和选择性材料去除形成的,这允许设计人员通过调整晶体管通道的宽度来精确调整它们。通过更宽的沟道获得高性能,通过更窄的沟道获得低功耗。这种精度大大降低了晶体管泄漏电流(即降低功耗)以及晶体管性能可变性(假设一切正常),这意味着更快的产品交付时间、上市时间和更高的产量。此外,根据应用材料公司最近的一份报告,GAAFET 有望将cell面积减少 20% 至 30% 。
说到应用,它最近推出的用于形成栅极氧化物叠层的高真空系统 IMS(集成材料解决方案)系统旨在解决 GAA 晶体管制造的主要挑战,即沟道之间的空间非常薄以及沉积多晶硅的必要性。在很短的时间内在沟道周围形成层栅氧化层和金属栅叠层。应用材料公司的新型 AMS 工具可以使用原子层沉积 (ALD)、热步骤和等离子体处理步骤沉积仅 1.5 埃厚的栅极氧化物。高度集成的机器还执行所有必要的计量步骤。
三星的 3GAE 是一种“早期”的 3nm 级制造技术,3GAE 将主要由三星 LSI(三星的芯片开发部门)以及可能一两个 SF 的其他 alpha 客户使用。请记住,三星的 LSI 和 SF 的其他早期客户倾向于大批量制造芯片,预计 3GAE 技术将得到相当广泛的应用,前提是这些产品的产量和性能符合预期。
过渡到全新的晶体管结构通常是一种风险,因为它涉及全新的制造工艺以及全新的工具。其他挑战是所有新节点引入并由新的电子设计自动化 (EDA) 软件解决的新布局方法、布局规划规则和布线规则。最后,芯片设计人员需要开发全新的 IP,价格昂贵。
外媒:三星3nm良率仅有20%
据外媒Phonearena报道,三星代工厂是仅次于巨头台积电的全球第二大独立代工厂。换句话说,除了制造自己设计的 Exynos 芯片外,三星还根据高通等代工厂客户的第三方公司提交的设计来制造芯片。
Snapdragon 865 应用处理器 (AP) 由台积电使用其 7nm 工艺节点构建。到了5nm Snapdragon 888 芯片组,高通回到了三星,并继续依靠韩国代工厂生产 4nm Snapdragon 8 Gen 1。这是目前为三星、小米、摩托罗拉制造的高端 Android 手机提供动力的 AP。
但在 2 月份,有报道称三星 Foundry 在其 4nm 工艺节点上的良率仅为 35%。这意味着只有 35% 的从晶圆上切割下来的芯片裸片可以通过质量控制。相比之下,台积电在生产 4nm Snapdragon 8 Gen 1 Plus 时实现了 70% 的良率。换句话说,在所有条件相同的情况下,台积电在同一时期制造的芯片数量是三星代工的两倍。
这就导致台积电最终收到高通的订单,以构建其剩余的 Snapdragon 8 Gen1 芯片组以及 Snapdragon 8 Gen 1 Plus SoC。我们还假设台积电将获得制造 3nm Snapdragon 8 Gen 2 的许可,即使高通需要向台积电支付溢价以让该芯片组的独家制造商在短时间内制造足够的芯片。
尽管三星最近表示其产量一直在提高,但《商业邮报》的一份报告称,三星 3nm 工艺节点的产量仍远低于公司的目标。虽然三星代工厂的全环栅极 (GAA) 晶体管架构首次推出其 3 纳米节点,使其在台积电(台积电将推出其 2 纳米节点的 GAA 架构)上处于领先地位,但三星代工厂在其早期 3 纳米生产中的良率一直处于10% 至 20%的范围 。
这不仅是三星需要改进的极低良率,而且比 Sammy 在 4nm Snapdragon 8 Gen 1 中所经历的上述 35% 良率还要糟糕。
Wccftech 表示,据消息人士称,三星将从明年开始向客户发货的 3nm GAA 芯片组的第一个“性能版本”实际上可能是新的内部 Exynos 芯片。据报道,三星一直在为其智能手机开发新的 Exynos 芯片系列,但现阶段尚不清楚它们是否会使用 3nm GAA 工艺节点制造。
台积电和三星很快就会有新的挑战者,因为英特尔曾表示,其目标是在 2024 年底之前接管行业的制程领导地位。它还率先获得了更先进的极紫外 (EUV) 光刻机。
第二代 EUV 机器被称为High NA 或高数值孔径。当前的 EUV 机器的 NA 为 0.33,但新机器的 NA 为 0.55。NA 越高,蚀刻在晶圆上的电路图案的分辨率就越高。这将帮助芯片设计人员和代工厂制造出新的芯片组,其中包含的晶体管数量甚至超过了当前集成电路上使用的数十亿个晶体管。
它还将阻止代工厂再次通过 EUV 机器运行晶圆以向芯片添加额外的功能。ASML 表示,第二代 EUV 机器产生的更高分辨率图案将提供更高的分辨率将使芯片特征小 1.7 倍,芯片密度增加 2.9 倍。
通过首先获得这台机器,英特尔将能够朝着从台积电和三星手中夺回制程领导地位的目标迈出一大步。
台积电3nm投产时间曝光
据台媒联合报报道,在晶圆代工三强争霸中,台积电和三星在3纳米争战,始终吸引全球半导体产业的目光。据调查,一度因开发时程延误,导致苹果新一代处理器今年仍采用5纳米加强版N4P的台积电3纳米,近期获得重大突破。台积电决定今年率先以第二版3纳米制程N3B,今年8月于今年南北两地,即新竹12厂研发中心第八期工厂及南科18厂P5厂同步投片,正式以鳍式场效电晶体(FinFET)架构,对决三星的环绕闸极(GAA)制程。
据台积电介绍,公司的3纳米(N3)制程技术将是5纳米(N5)制程技术之后的另一个全世代制程,在N3制程技术推出时将会是业界最先进的制程技术,具备最佳的PPA及电晶体技术。相较于N5制程技术,N3制程技术的逻辑密度将增加约70%,在相同功耗下速度提升10-15%,或者在相同速度下功耗降低25-30%。N3制程技术的开发进度符合预期且进展良好,未来将提供完整的平台来支援行动通讯及高效能运算应用,预期2021年将接获多个客户产品投片。此外,预计于2022下半年开始量产。
而如上所述,晶圆18厂将是台积电3nm的主要生产工厂。资料系那是,台积电南科的Fab 18是现下的扩产重心,旗下有P1 P4共4座5纳米及4奈厂,以及P5 P8共4座3纳米厂,而P1 P3的Fab 18A均处于量产状态,至于P4 P6的Fab 18B厂生产线则已建置完成,而Fab 18B厂,即3纳米制程产线,早在去年年年底就已开始进行测试芯片的下线投片。
在芯片设计企业还在为产能“明争暗斗”的时候,晶圆制造领域又是另外一番景象。对晶圆制造厂来说,眼下更重要的是3nm的突破。谁率先量产了3nm,谁就将占领未来晶圆制造产业的制高点,甚至还会影响AMD、英伟达等芯片巨头的产品路线图。
毫无疑问,在3nm这个节点,目前能一决雌雄的只有台积电和三星,但英特尔显然也在往先进制程方面发力。不过从近日的消息来看,台积电和三星两家企业在量产3nm这件事上进行的都颇为坎坷。Gartner 分析师 Samuel Wang表示,3nm 的斜坡将比之前的节点花费更长的时间。
近日,一份引用半导体行业消息来源的报告表明,据报道,台积电在其 3nm 工艺良率方面存在困难。消息来源报告的关键传言是台积电发现其 3nm FinFET 工艺很难达到令人满意的良率。但到目前为止,台积电尚未公开承认任何 N3 延迟,相反其声称“正在取得良好进展”。
众所周知,台积电3nm在晶体管方面采用鳍式场效应晶体管(FinFET)结构,FinFET运用立体的结构,增加了电路闸极的接触面积,进而让电路更加稳定,同时也达成了半导体制程持续微缩的目标。其实,FinFET晶体管走在3nm多多少少已是极限了,再向下将会遇到制程微缩而产生的电流控制漏电等物理极限问题,而台积电之所以仍选择其很大部分原因是不用变动太多的生产工具,也能有较具优势的成本结构。特别对于客户来说,既不用有太多设计变化还能降低生产成本,可以说是双赢局面。
从此前公开数据显示,与5nm芯片相比,台积电3nm芯片的逻辑密度将提高75%,效率提高15%,功耗降低30%。据悉,台积电 3nm 制程已于2021年3 月开始风险性试产并小量交货,预计将在2022年下半年开始商业化生产。
从工厂方面来看,中国台湾南科18厂四至六期是台积电3nm量产基地。客户方面,从上文可以看出,英特尔、苹果、高通等都选择了台积电。大摩分析师Charlie Chan日前发表报告称,台积电在2023年的3nm芯片代工市场上几乎是垄断性的,市场份额接近100%。
不同于台积电在良率方面的问题,三星在3nm的困难是3 纳米GAA 制程建立专利IP 数量方面落后。据南韩媒体报道,三星缺乏3 纳米GAA 制程相关专利,令三星感到不安。
三星在晶体管方面采用的是栅极环绕型 (Gate-all-around,GAA) 晶体管架构。相比台积电的FinFET晶体管,基于GAA的3nm技术成本肯定较高,但从性能表现上来看,基于GAA架构的晶体管可以提供比FinFET更好的静电特性,满足一定的珊极宽度要求,可以表现为同样工艺下,使用GAA架构可以将芯片尺寸做的更小。
平面晶体管、FinFET与GAA FET
与5nm制造工艺相比,三星的3nm GAA技术的逻辑面积效率提高了35%以上,功耗降低了50%,性能提高了约30%。三星在去年6月正式宣布3nm工艺制程技术已经成功流片。此外,三星还曾宣布将在 2022 年推出 3nm GAA 的早期版本,而其“性能版本”将在 2023 年出货。
目前,在工厂方面,此前有消息称三星可能会在美国投资170亿美元建设3nm芯片生产线。在客户方面,三星未有具体透露,但曾有消息称高通、AMD 等台积电重量级客户都有意导入三星 3nm 制程,但介于上述提到的韩媒报道高通已将其3nm AP处理器的代工订单交给台积电,三星3nm客户仍成谜。
在Pat Gelsinger于去年担任英特尔CEO之后,这家曾经在代工领域试水的IDM巨头又重新回到了这个市场。同时,他们还提出了很雄壮的野心。
在本月18日投资人会议上,英特尔CEO Pat Gelsinger再次强调,英特尔2nm制程将在2024年上半年可量产,这个量产时间早于台积电,意味2年后晶圆代工业务与台积电竞争态势会更白热化。
虽然在3nm工艺方面,英特尔没有过多的透露,但是Digitimes去年的研究报告分析了台积电、三星、Intel及IBM四家厂商在相同命名的半导体制程工艺节点上的晶体管密度问题,并对比了各家在10nm、7nm、5nm、3nm及2nm的晶体管密度情况。
在工厂方面,英特尔曾强调将斥资800亿欧元在欧洲设厂,英特尔德国负责人Christin Eisenschmid受访时透露,将在欧洲生产2nm或推进更小的芯片。英特尔将2nm作为扩大欧洲生产能力的重要关键,以避免未来在先进技术竞争中落后。
总的来说,在3nm节点,台积电、三星和英特尔谁会是最后的赢家可能只有交给时间来判定,但从目前情势来看,台积电或略胜一筹。
3nm已经到了摩尔定律的物理极限,往后又该如何发展?这已经成为全球科研人员亟待寻求的解法。目前,研究人员大多试图在晶体管技术、材料方面寻求破解之法。
上述三星在3nm制程中使用的GAA晶体管就是3nm后很好的选择,GAA设计通道的四个面周围有栅极,可减少漏电压并改善对通道的控制,这是缩小工艺节点时的关键。据报道,台积电在2nm工艺上也将采用GAA晶体管。
纳米线是直径在纳米量级的纳米结构。纳米线技术的基本吸引力之一是它们表现出强大的电学特性,包括由于其有效的一维结构而产生的高电子迁移率。
最近,来自 HZDR 的研究人员宣布,他们已经通过实验证明了长期以来关于张力下纳米线的理论预测。在实验中,研究人员制造了由 GaAs 核心和砷化铟铝壳组成的纳米线。最后,结果表明,研究人员确实可以通过对纳米线施加拉伸应变来提高纳米线的电子迁移率。测量到未应变纳米线和块状 GaAs 的相对迁移率增加约为 30%。研究人员认为,他们可以在具有更大晶格失配的材料中实现更显着的增加。
最近,英特尔一项关于“堆叠叉片式晶体管(stacked forksheet transistors)”的技术专利引起了人们的注意。
英特尔表示,新的晶体管设计最终可以实现3D和垂直堆叠的CMOS架构,与目前最先进的三栅极晶体管相比,该架构允许增加晶体管的数量。在专利里,英特尔描述了纳米带晶体管和锗薄膜的使用,后者将充当电介质隔离墙,在每个垂直堆叠的晶体管层中重复,最终取决于有多少个晶体管被相互堆叠在一起。
据了解,英特尔并不是第一家引用这种制造方法的公司,比利时研究小组Imec在2019年就曾提出这个方法,根据 Imec 的第一个标准单元模拟结果,当应用于 2nm 技术节点时,与传统的纳米片方法相比,该技术可以显着提高晶体管密度。
垂直传输场效应晶体管(VTFET)由IBM和三星共同公布,旨在取代当前用于当今一些最先进芯片的FinFET技术。新技术将垂直堆叠晶体管,允许电流在晶体管堆叠中上下流动,而不是目前大多数芯片上使用的将晶体管平放在硅表面上,然后电流从一侧流向另一侧。
据 IBM 和三星称,这种设计有两个优点。首先,它将允许绕过许多性能限制,将摩尔定律扩展到 1 纳米阈值之外。同时还可以影响它们之间的接触点,以提高电流并节约能源。他们表示,该设计可能会使性能翻倍,或者减少85%的能源消耗。
其实,对于3nm以后先进制程如何演进,晶体管制造只是解决方案的一部分,芯片设计也至关重要,需要片上互连、组装和封装等对器件和系统性能的影响降至最低。
点击文末【阅读原文】,可查看本文原文链接!
晶圆 集成电路 设备 汽车 芯片 存储 台积电 AI 封装
原文链接!
由于纳米粒子细化,晶界数量大幅度的增加,可使材料的强度、韧性和超塑性大为提高。其结构颗粒对光,机械应力和电的反应完全不同于微米或毫米级的结构颗粒,使得纳米材料在宏观上显示出许多奇妙的特性,例如:纳米相铜强度比普通铜高5倍;纳米相陶瓷是摔不碎的,这与大颗粒组成的普通陶瓷完全不一样。纳米材料从根本上改变了材料的结构,可望得到诸如高强度金属和合金、塑性陶瓷、金属间化合物以及性能特异的原子规模复合材料等新一代材料,为克服材料科学研究领域中长期未能解决的问题开拓了新的途径。纳米技术的应用及其前景
纳米技术在陶瓷领域方面的应用
陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性。英国材料学家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径。
所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。要制备纳米陶瓷,这就需要解决:粉体尺寸形貌和粒径分布的控制,团聚体的控制和分散。块体形态、缺陷、粗糙度以及成分的控制。
Gleiter指出,如果多晶陶瓷是由大小为几个纳米的晶粒组成,则能够在低温下变为延性的,能够发生100%的范性形变。并且发现,纳米TiO2陶瓷材料在室温下具有优良的韧性,在180℃经受弯曲而不产生裂纹。许多专家认为,如能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术问题,从而控制陶瓷晶粒尺寸在50nm以下的纳米陶瓷,则它将具有的高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点。上海硅酸盐研究所在纳米陶瓷的制备方面起步较早,他们研究发现,纳米3Y-TZP陶瓷(100nm左右)在经室温循环拉伸试验后,在纳米3Y-TZP样品的断口区域发生了局部超塑性形变,形变量高达380%,并从断口侧面观察到了大量通常出现在金属断口的滑移线。 Tatsuki等人对制得的Al2O3-SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2O3晶界处的纳米SiC粒子发生旋转并嵌入Al2O3晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2O3-SiC纳米复相陶瓷的蠕变能力。
虽然纳米陶瓷还有许多关键技术需要解决,但其优良的室温和高温力学性能、抗弯强度、断裂韧性,使其在切削刀具、轴承、汽车发动机部件等诸多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用,具有广阔的应用前景。
纳米技术在微电子学上的应用
纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米粒子的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。纳米电子学的最终目标是将集成电路进一步减小,研制出由单原子或单分子构成的在室温能使用的各种器件。
目前,利用纳米电子学已经研制成功各种纳米器件。单电子晶体管,红、绿、蓝三基色可调谐的纳米发光二极管以及利用纳米丝、巨磁阻效应制成的超微磁场探测器已经问世。并且,具有奇特性能的碳纳米管的研制成功,为纳米电子学的发展起到了关键的作用。
碳纳米管是由石墨碳原子层卷曲而成,径向尺层控制在100nm以下。电子在碳纳米管的运动在径向上受到限制,表现出典型的量子限制效应,而在轴向上则不受任何限制。以碳纳米管为模子来制备一维半导体量子材料,并不是凭空设想,清华大学的范守善教授利用碳纳米管,将气相反应限制在纳米管内进行,从而生长出半导体纳米线。他们将Si-SiO2混合粉体置于石英管中的坩埚底部,加热并通入N2。SiO2气体与N2在碳纳米管中反应生长出Si3N4纳米线,其径向尺寸为4~40nm。另外,在1997年,他们还制备出了GaN纳米线。1998年该科研组与美国斯坦福大学合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长,它将大大推进碳纳米管在场发射平面显示方面的应用。其独特的电学性能使碳纳米管可用于大规模集成电路,超导线材等领域。
早在1989年,IBM公司的科学家就已经利用隧道扫描显微镜上的探针,成功地移动了氙原子,并利用它拼成了IBM三个字母。日本的Hitachi公司成功研制出单个电子晶体管,它通过控制单个电子运动状态完成特定功能,即一个电子就是一个具有多功能的器件。另外,日本的NEC研究所已经拥有制作100nm以下的精细量子线结构技术,并在GaAs衬底上,成功制作了具有开关功能的量子点阵列。目前,美国已研制成功尺寸只有4nm具有开关特性的纳米器件,由激光驱动,并且开、关速度很快。
美国威斯康星大学已制造出可容纳单个电子的量子点。在一个针尖上可容纳这样的量子点几十亿个。利用量子点可制成体积小、耗能少的单电子器件,在微电子和光电子领域将获得广泛应用。此外,若能将几十亿个量子点连结起来,每个量子点的功能相当于大脑中的神经细胞,再结合MEMS(微电子机械系统)方法,它将为研制智能型微型电脑带来希望。
纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理信息的能力,实现信息采集和处理能力的革命性突破,纳米电子学将成为对世纪信息时代的核心。
纳米技术在生物工程上的应用
众所周知,分子是保持物质化学性质不变的最小单位。生物分子是很好的信息处理材料,每一个生物大分子本身就是一个微型处理器,分子在运动过程中以可预测方式进行状态变化,其原理类似于计算机的逻辑开关,利用该特性并结合纳米技术,可以此来设计量子计算机。美国南加州大学的Adelman博士等应用基于DNA分子计算技术的生物实验方法,有效地解决了目前计算机无法解决的问题—“哈密顿路径问题”,使人们对生物材料的信息处理功能和生物分子的计算技术有了进一步的认识。
虽然分子计算机目前只是处于理想阶段,但科学家已经考虑应用几种生物分子制造计算机的组件,其中细菌视紫红质最具前景。该生物材料具有特异的热、光、化学物理特性和很好的稳定性,并且,其奇特的光学循环特性可用于储存信息,从而起到代替当今计算机信息处理和信息存储的作用。在整个光循环过程中,细菌视紫红质经历几种不同的中间体过程,伴随相应的物质结构变化。Birge等研究了细菌视紫红质分子潜在的并行处理机制和用作三维存储器的潜能。通过调谐激光束,将信息并行地写入细菌视紫红质立方体,并从立方体中读取信息,并且细菌视紫红质的三维存储器可提供比二维光学存储器大得多的存储空间。
到目前为止,还没有出现商品化的分子计算机组件。科学家们认为:要想提高集成度,制造微型计算机,关键在于寻找具有开关功能的微型器件。美国锡拉丘兹大学已经利用细菌视紫红质蛋白质制作出了光导“与”门,利用发光门制成蛋白质存储器。此外,他们还利用细菌视紫红质蛋白质研制模拟人脑联想能力的中心网络和联想式存储装置。
纳米计算机的问世,将会使当今的信息时代发生质的飞跃。它将突破传统极限,使单位体积物质的储存和信息处理的能力提高上百万倍,从而实现电子学上的又一次革命。
纳米技术在光电领域的应用
纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高。将纳米技术用于现有雷达信息处理上,可使其能力提高10倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察。但是要获取高分辨率图像,就必需先进的数字信息处理技术。科学家们发现,将光调制器和光探测器结合在一起的量子阱自电光效应器件,将为实现光学高速数学运算提供可能。
美国桑迪亚国家实验室的Paul等发现:纳米激光器的微小尺寸可以使光子被限制在少数几个状态上,而低音廊效应则使光子受到约束,直到所产生的光波累积起足够多的能量后透过此结构。其结果是激光器达到极高的工作效率,而能量阈则很低。纳米激光器实际上是一根弯曲成极薄面包圈的形状的光子导线,实验发现,纳米激光器的大小和形状能够有效控制它发射出的光子的量子行为,从而影响激光器的工作。研究还发现,纳米激光器工作时只需约100微安的电流。最近科学家们把光子导线缩小到只有五分之一立方微米体积内。在这一尺度上,此结构的光子状态数少于10个,接近了无能量运行所要求的条件,但是光子的数目还没有减少到这样的极限上。最近,麻省理工学院的研究人员把被激发的钡原子一个一个地送入激光器中,每个原子发射一个有用的光子,其效率之高,令人惊讶。
除了能提高效率以外,无能量阈纳米激光器的运行还可以得出速度极快的激光器。由于只需要极少的能量就可以发射激光,这类装置可以实现瞬时开关。已经有一些激光器能够以快于每秒钟200亿次的速度开关,适合用于光纤通信。由于纳米技术的迅速发展,这种无能量阈纳米激光器的实现将指日可待。
纳米技术在化工领域的应用
纳米粒子作为光催化剂,有着许多优点。首先是粒径小,比表面积大,光催化效率高。另外,纳米粒子生成的电子、空穴在到达表面之前,大部分不会重新结合。因此,电子、空穴能够到达表面的数量多,则化学反应活性高。其次,纳米粒子分散在介质中往往具有透明性,容易运用光学手段和方法来观察界面间的电荷转移、质子转移、半导体能级结构与表面态密度的影响。目前,工业上利用纳米二氧化钛-三氧化二铁作光催化剂,用于废水处理(含SO32-或 Cr2O72-体系),已经取得了很好的效果。
用沉淀溶出法制备出的粒径约30~60nm的白色球状钛酸锌粉体,比表面积大,化学活性高,用它作吸附脱硫剂,较固相烧结法制备的钛酸锌粉体效果明显提高。
纳米静电屏蔽材料,是纳米技术的另一重要应用。以往的静电屏蔽材料一般都是由树脂掺加碳黑喷涂而成,但性能并不是特别理想。为了改善静电屏蔽材料的性能,日本松下公司研制出具有良好静电屏蔽的纳米涂料。利用具有半导体特性的纳米氧化物粒子如Fe2O3、TiO2、ZnO等做成涂料,由于具有较高的导电特性,因而能起到静电屏蔽作用。另外,氧化物纳米微粒的颜色各种各样,因而可以通过复合控制静电屏蔽涂料的颜色,这种纳米静电屏蔽涂料不但有很好的静电屏蔽特性,而且也克服了碳黑静电屏蔽涂料只有单一颜色的单调性。
另外,如将纳米TiO2粉体按一定比例加入到化妆品中,则可以有效地遮蔽紫外线。一般认为,其体系中只需含纳米二氧化钛0.5~1%,即可充分屏蔽紫外线。目前,日本等国已有部分纳米二氧化钛的化妆品问世。紫外线不仅能使肉类食品自动氧化而变色,而且还会破坏食品中的维生素和芳香化合物,从而降低食品的营养价值。如用添加0.1~0.5%的纳米二氧化钛制成的透明塑料包装材料包装食品,既可以防止紫外线对食品的破坏作用,还可以使食品保持新鲜。将金属纳米粒子掺杂到化纤制或纸张中,可以大大降低静电作用。利用纳米微粒构成的海绵体状的轻烧结体,可用于气体同位素、混合稀有气体及有机化合物等的分离和浓缩,用于电池电极、化学成分探测器及作为高效率的热交换隔板材料等。纳米微粒还可用作导电涂料,用作印刷油墨,制作固体润滑剂等。
用化学共沉淀法得到ZnCO3包覆Ti(OH)4粒子,在一定温度下预焙解后,溶去绝大部分包覆的ZnO粉体,利用体系中少量的ZnTiO3(ZnTiO3与TiO2(R)的晶体结构类似)促进了TiO2从锐钛型向金红石型的转化,制得粒径约20~60nm的金红石型二氧化钛粉体。用紫外分光光度计进行了光学性能测试,结果发现此粉体对240~400nm的紫外线有较强的吸收,吸收率高达92%以上,其吸收性能远远高于普通TiO2粉体。另外,由于纳米粉体的量子尺寸效应和体积效应,导致纳米粒子的光谱特性出现“兰移”或“红移”现象。在制备超细铝酸盐基长余辉发光材料时,用软化学法合成出的超细发光粉体的发射光谱的主峰位置,较固相机械混合烧结法制备的发光粉体兰移了12nm。余辉衰减曲线表明,该法合成出的发光粉体,其余辉衰减速度相对固相法合成出的发光粉体要快得多,这些都是由于粉体粒子大幅度减小所致。
研究人员还发现,可以利用纳米碳管其独特的孔状结构,大的比表面(每克纳米碳管的表面积高达几百平方米)、较高的机械强度做成纳米反应器,该反应器能够使化学反应局限于一个很小的范围内进行。在纳米反应器中,反应物在分子水平上有一定的取向和有序排列,但同时限制了反应物分子和反应中间体的运动。这种取向、排列和限制作用将影响和决定反应的方向和速度。科学家们利用纳米尺度的分子筛作反应器,在烯烃的光敏氧化作用中,将底物分子置于反应器的孔腔中,敏化剂在溶液中,这样就只生成单重态的氧化产物。用金属醇化合物和羧酸反应,可合成具有一定孔径的大环化合物。利用嵌段和接技共聚物会形成微相分离,可形成不同的“纳米结构”作为纳米反应器。
纳米技术在医学上的应用
随着纳米技术的发展,在医学上该技术也开始崭露头脚。研究人员发现,生物体内的RNA蛋白质复合体,其线度在15~20nm之间,并且生物体内的多种病毒,也是纳米粒子。10nm以下的粒子比血液中的红血球还要小,因而可以在血管中自由流动。如果将超微粒子注入到血液中,输送到人体的各个部位,作为监测和诊断疾病的手段。科研人员已经成功利用纳米SiO2微粒进行了细胞分离,用金的纳米粒子进行定位病变治疗,以减少副作用等。另外,利用纳米颗粒作为载体的病毒诱导物已经取得了突破性进展,现在已用于临床动物实验,估计不久的将来即可服务于人类。
研究纳米技术在生命医学上的应用,可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息。科学家们设想利用纳米技术制造出分子机器人,在血液中循环,对身体各部位进行检测、诊断,并实施特殊治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。这样,在不久的将来,被视为当今疑难病症的爱滋病、高血压、癌症等都将迎刃而解,从而将使医学研究发生一次革命。
纳米技术在分子组装方面的应用
纳米技术的发展,大致经历了以下几个发展阶段:在实验室探索用各种手段制备各种纳米微粒,合成块体。研究评估表征的方法,并探索纳米材料不同于常规材料的特殊性能。利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料。目前主要是进行纳米组装体系、人工组装合成纳米结构材料的研究。虽然已经取得了许多重要成果,但纳米级微粒的尺寸大小及均匀程度的控制仍然是一大难关。如何合成具有特定尺寸,并且粒度均匀分布无团聚的纳米材料,一直是科研工作者努力解决的问题。目前,纳米技术深入到了对单原子的 *** 纵,通过利用软化学与主客体模板化学,超分子化学相结合的技术,正在成为组装与剪裁,实现分子手术的主要手段。科学家们设想能够设计出一种在纳米量级上尺寸一定的模型,使纳米颗粒能在该模型内生成并稳定存在,则可以控制纳米粒子的尺寸大小并防止团聚的发生。
1992年,Kresge等首次采用介孔氧化硅材料为基,利用液晶模板技术,在纳米尺度上实现有机/无机离子的自组装反应。其特点是孔道大小均匀,孔径可以在5~10nm内连续可调,具有很高的比表面积和较好的热稳定性。使其在分子催化、吸附与分离等过程,展示了广阔的应用前景。同时,这类材料在较大范围内可连续调节其纳米孔道结构,可以作为纳米粒子的微型反应容器。
Wagner等利用四硫富瓦烯的独特的氧化还原能力,通过自组装方式合成了具有电荷传递功能的配合物分子梭,具有开关功能。Attard等利用液晶作为稳定的预组织模板,利用表面活性剂对水解缩聚反应过程和溶胶表面进行控制,合成了六角液晶状微孔SiO2材料。Schmid等利用特定的配位体,成功地制备出均匀分布的由55个Au原子组成的金纳米粒子。据理论预测,如果以这种金纳米粒子做成分子器件,其分子开关的密度将会比一般半导体提高105~106倍。
1996年,IBM公司利用分子组装技术,研制出了世界上最小的“纳米算盘”,该算盘的算珠由球状的C60分子构成。美国佐治亚理工学院的研究人员利用纳米碳管制成了一种崭新的“纳米秤”,能够称出一个石墨微粒的重量,并预言该秤可以用来称取病毒的重量。
李彦等以六方液晶为模板合成了CdS纳米线,该纳米线生长在表面活性剂分子形成的六方堆积的空隙水相内,呈平行排列,直径约1~5nm。利用有机表面活性剂作为几何构型模板剂,通过有机/无机离子间的静电作用,在分子水平上进行自组装合成,并形成规则的纳米异质复合结构,是实现对材料进行裁减的有效途径。
纳米技术在其它方面的应用
利用先进的纳米技术,在不久的将来,可制成含有纳米电脑的可人—机对话并具有自我复制能力的纳米装置,它能在几秒钟内完成数十亿个 *** 作动作。在军事方面,利用昆虫作平台,把分子机器人植入昆虫的神经系统中控制昆虫飞向敌方收集情报,使目标丧失功能。
利用纳米技术还可制成各种分子传感器和探测器。利用纳米羟基磷酸钙为原料,可制作人的牙齿、关节等仿生纳米材料。将药物储存在碳纳米管中,并通过一定的机制来激发药剂的释放,则可控药剂有希望变为现实。另外,还可利用碳纳米管来制作储氢材料,用作燃料汽车的燃料“储备箱”。利用纳米颗粒膜的巨磁阻效应研制高灵敏度的磁传感器;利用具有强红外吸收能力的纳米复合体系来制备红外隐身材料,都是很具有应用前景的技术开发领域。
纳米技术在国内的研究情况及取得的成果
纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材料科学的四大重点研究开发项目之一。在德国,以汉堡大学和美因茨大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研究。在国内,许多科研院所、高等院校也组织科研力量,开展纳米技术的研究工作,并取得了一定的研究成果,主要如下:
定向纳米碳管阵列的合成,由中国科学院物理研究所解思深研究员等完成。他们利用化学气相法高效制备出孔径约20纳米,长度约100微米的碳纳米管。并由此制备出纳米管阵列,其面积达3毫米×3毫米,碳纳米管之间间距为100微米。
氮化镓纳米棒的制备,由清华大学范守善教授等完成。他们首次利用碳纳米管制备出直径3~40纳米、长度达微米量级的半导体氮化镓一维纳米棒,并提出碳纳米管限制反应的概念。并与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长。
准一维纳米丝和纳米电缆,由中国科学院固体物理研究所张立德研究员等完成。他们利用碳热还原、溶胶—凝胶软化学法并结合纳米液滴外延等新技术,首次合成了碳化钽纳米丝外包绝缘体SiO2纳米电缆。
用催化热解法制成纳米金刚石,由中国科学技术大学的钱逸泰等完成。他们用催化热解法使四氯化碳和钠反应,以此制备出了金刚石纳米粉。
但是,同国外发达国家的先进技术相比,我们还有很大的差距。德国科学技术部曾经对纳米技术未来市场潜力作过预测:他们认为到2000年,纳米结构器件市场容量将达到6375亿美元,纳米粉体、纳米复合陶瓷以及其它纳米复合材料市场容量将达到5457亿美元,纳米加工技术市场容量将达到442亿美元,纳米材料的评价技术市场容量将达到27.2亿美元。并预测市场的突破口可能在信息、通讯、环境和医药等领域。
总之,纳米技术正成为各国科技界所关注的焦点,正如钱学森院士所预言的那样:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是21世纪的又一次产业革命。”
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)