半导体器件简介及详细资料

半导体器件简介及详细资料,第1张

简介

半导体器件(semiconductor device)通常,利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极体,晶体二极体的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种电晶体(又称晶体三极体)。电晶体又可以分为双极型电晶体和场效应电晶体两 类。根据用途的不同,电晶体可分为功率电晶体微波电晶体和低噪声电晶体。除了作为放大、振荡、开关用的 一般电晶体外,还有一些特殊用途的电晶体,如光电晶体、磁敏电晶体,场效应感测器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般电晶体的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结电晶体可用于产生锯齿波,可控矽可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的套用 。

分类 晶体二极体

晶体二极体的基本结构是由一块 P型半导体和一块N型半导体结合在一起形成一个 PN结。在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。这偶极层阻止了空穴和电子的继续扩散而使PN结达到平衡状态。当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。因此,PN结具有单向导电性。此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。在偶极层内部电场很强。当外加反向电压达到一定阈值时,偶极层内部会发生雪崩击穿而使电流突然增加几个数量级。利用PN结的这些特性在各种套用领域内制成的二极体有:整流二极体、检波二极体、变频二极体、变容二极体、开关二极体、稳压二极体(曾讷二极体)、崩越二极体(碰撞雪崩渡越二极体)和俘越二极体(俘获电浆雪崩渡越时间二极体)等。此外,还有利用PN结特殊效应的隧道二极体,以及没有PN结的肖脱基二极体和耿氏二极体等。

双极型电晶体

它是由两个PN结构成,其中一个PN结称为发射结,另一个称为集电结。两个结之间的一薄层半导体材料称为基区。接在发射结一端和集电结一端的两个电极分别称为发射极和集电极。接在基区上的电极称为基极。在套用时,发射结处于正向偏置,集电极处于反向偏置。通过发射结的电流使大量的少数载流子注入到基区里,这些少数载流子靠扩散迁移到集电结而形成集电极电流,只有极少量的少数载流子在基区内复合而形成基极电流。集电极电流与基极电流之比称为共发射极电流放大系数?。在共发射极电路中,微小的基极电流变化可以控制很大的集电极电流变化,这就是双极型电晶体的电流放大效应。双极型电晶体可分为NPN型和PNP型两类。

场效应电晶体

它依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。

根据栅的结构,场效应电晶体可以分为三种:

①结型场效应管(用PN结构成栅极)

②MOS场效应管(用金属-氧化物-半导体构成栅极,见金属-绝缘体-半导体系统)

③MES场效应管(用金属与半导体接触构成栅极)其中MOS场效应管使用最广泛。尤其在大规模积体电路的发展中,MOS大规模积体电路具有特殊的优越性。MES场效应管一般用在GaAs微波电晶体上。

在MOS器件的基础上,又发展出一种电荷耦合器件 (CCD),它是以半导体表面附近存储的电荷作为信息,控制表面附近的势阱使电荷在表面附近向某一方向转移。这种器件通常可以用作延迟线和存储器等配上光电二极体列阵,可用作摄像管。

命名方法

中国半导体器件型号命名方法

半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、雷射器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:

第一部分:用数字表示半导体器件有效电极数目。2-二极体、3-三极体

第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极体时:A-N型锗材料、B-P型锗材料、C-N型矽材料、D-P型矽材料。表示三极体时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型矽材料、D-NPN型矽材料。

第三部分:用汉语拼音字母表示半导体器件的类型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc3MHz,Pc<1W)、D-低频大功率管(f1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-雷射器件。

第四部分:用数字表示序号

第五部分:用汉语拼音字母表示规格号

例如:3DG18表示NPN型矽材料高频三极体

日本半导体分立器件型号命名方法

日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:

第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。

第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。

第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控矽、G-N控制极可控矽、H-N基极单结电晶体、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控矽。

第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从"11"开始,表示在日本电子工业协会JEIA登记的顺序号不同公司的性能相同的器件可以使用同一顺序号数字越大,越是产品。

第五部分: 用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。

美国半导体分立器件型号命名方法

美国电晶体或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:

第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。

第二部分:用数字表示pn结数目。1-二极体、2=三极体、3-三个pn结器件、n-n个pn结器件。

第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。

第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。

第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP矽高频小功率开关三极体,JAN-军级、2-三极体、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。

国际电子联合会半导体器件型号命名方法

德国、法国、义大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:

第一部分:用字母表示器件使用的材料。A-器件使用材料的禁频宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如矽、C-器件使用材料的Eg>1.3eV 如砷化镓、D-器件使用材料的Eg<0.6eV 如锑化铟、E-器件使用复合材料及光电池使用的材料

第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极体、B-变容二极体、C-低频小功率三极体、D-低频大功率三极体、E-隧道二极体、F-高频小功率三极体、G-复合器件及其他器件、H-磁敏二极体、K-开放磁路中的霍尔元件、L-高频大功率三极体、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极体、Y-整流二极体、Z-稳压二极体。

第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。

第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。

除四个基本部分外,有时还加后缀,以区别特性或进一步分类。常见后缀如下:

1、稳压二极体型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%其后缀第二部分是数字,表示标称稳定电压的整数数值后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。

2、整流二极体后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。

3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。

如:BDX51-表示NPN矽低频大功率三极体,AF239S-表示PNP锗高频小功率三极体。

积体电路

把晶体二极体、三极体以及电阻电容都制作在同一块矽晶片上,称为积体电路。一块矽晶片上集成的元件数小于 100个的称为小规模积体电路,从 100个元件到1000 个元件的称为中规模积体电路,从1000 个元件到100000 个元件的称为大规模积体电路,100000 个元件以上的称为超大规模积体电路。积体电路是当前发展计算机所必需的基础电子器件。许多工业先进国家都十分重视积体电路工业的发展。积体电路的集成度以每年增加一倍的速度在增长。每个晶片上集成256千位的MOS随机存储器已研制成功,正在向1兆位 MOS随机存储器探索。

光电器件 光电探测器

光电探测器的功能是把微弱的光信号转换成电信号,然后经过放大器将电信号放大,从而达到检测光信号的目的。光敏电阻是最早发展的一种光电探测器。它利用了半导体受光照后电阻变小的效应。此外,光电二极体、光电池都可以用作光电探测元件。十分微弱的光信号,可以用雪崩光电二极体来探测。它是把一个PN结偏置在接近雪崩的偏压下,微弱光信号所激发的少量载流子通过接近雪崩的强场区,由于碰撞电离而数量倍增,因而得到一个较大的电信号。除了光电探测器外,还有与它类似的用半导体制成的粒子探测器。

半导体发光二极体

半导体发光二极体的结构是一个PN结,它正向通电流时,注入的少数载流子靠复合而发光。它可以发出绿光、黄光、红光和红外线等。所用的材料有 GaP、GaAs、GaAs1-xPx、Ga1-xAlxAs、In1-xGaxAs1-yPy等。

半导体雷射器

如果使高效率的半导体发光管的发光区处在一个光学谐振腔内,则可以得到雷射输出。这种器件称为半导体雷射器或注入式雷射器。最早的半导体雷射器所用的PN结是同质结,以后采用双异质结结构。双异质结雷射器的优点在于它可以使注入的少数载流子被限制在很薄的一层有源区内复合发光,同时由双异质结结构组成的光导管又可以使产生的光子也被限制在这层有源区内。因此双异质结雷射器有较低的阈值电流密度,可以在室温下连续工作。

光电池

当光线投射到一个PN结上时,由光激发的电子空穴对受到PN结附近的内在电场的作用而向相反方向分离,因此在PN结两端产生一个电动势,这就成为一个光电池。把日光转换成电能的日光电池很受人们重视。最先套用的日光电池都是用矽单晶制造的,成本太高,不能大量推广使用。国际上都在寻找成本低的日光电池,用的材料有多晶矽和无定形矽等。

其它

利用半导体的其他特性做成的器件还有热敏电阻、霍耳器件、压敏元件、气敏电晶体和表面波器件等。

未来发展

今年是摩尔法则(Moore'slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。

这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,网际网路将全世界联系起来,多媒体视听设备丰富著每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。

这一切背后的动力都是半导体晶片。如果按照旧有方式将电晶体、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对晶片技术的法则不久的将来,它有可能扩展到无线技术、光学技术、感测器技术等领域,成为人们在未知领域探索和创新的指导思想。

毫无疑问,摩尔法则对整个世界意义深远。不过,随着电晶体电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,"在10年左右的时间内,我们将看到摩尔法则崩溃。"前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。

图书信息

书 名: 半导体器件

作 者:布伦南高建军刘新宇

出版社:机械工业出版社

出版时间: 2010年05月

ISBN: 9787111298366

定价: 36元

内容简介

《半导体器件:计算和电信中的套用》从半导体基础开始,介绍了电信和计算产业中半导体器件的发展现状,在器件方面为电子工程提供了坚实的基础。内容涵盖未来计算硬体和射频功率放大器的实现方法,阐述了计算和电信的发展趋势和系统要求对半导体器件的选择、设计及工作特性的影响。

《半导体器件:计算和电信中的套用》首先讨论了半导体的基本特性接着介绍了基本的场效应器件MODFET和M0SFET,以及器件尺寸不断缩小所带来的短沟道效应和面临的挑战最后讨论了光波和无线电信系统中半导体器件的结构、特性及其工作条件。

作者简介

Kevin F Brennan曾获得美国国家科学基金会的青年科学家奖。2002年被乔治亚理工大学ECE学院任命为杰出教授,同年还获得特别贡献奖,以表彰他对研究生教育所作出的贡献。2003年,他获得乔治亚理工大学教职会员最高荣誉--杰出教授奖。他还是IEEE电子器件学会杰出讲师。

图书目录

译者序

前言

第1章 半导体基础

1.1 半导体的定义

1.2 平衡载流子浓度与本征材料

1.3 杂质半导体材料

思考题

第2章 载流子的运动

2.1 载流子的漂移运动与扩散运动

2.2 产生-复合

2.3 连续性方程及其解

思考题

第3章 结

3.1 处于平衡状态的pn结

3.2 不同偏压下的同质pn结

3.3 理想二极体行为的偏离

3.4 载流子的注入、拉出、电荷控制分析及电容

3.5 肖特基势垒

思考题

第4章 双极结型电晶体

4.1 BJT工作原理

4.2 BJT的二阶效应

4.2.1 基区漂移

4.2.2 基区宽度调制/Early效应

4.2.3 雪崩击穿

4.3 BJT的高频特性

思考题

第5章结型场效应电晶体和金属半导体场效应电晶体

5.1 JFE

光刻机被限制,中芯国际晶圆厂延期,为何不用国产光刻机?

科技铭程

原创

2023-2-18 17:15 · 来自陕西 · 优质科技领域创作者

近日,中芯国际表示:由于难以获得先进的芯片制造设备,其在北京的新工厂落后于预期。

尽管中芯国际没有具体说明是何种设备,但根据推测,被限设备来自ASML的浸没式DUV光刻机。

因为中芯国际于2020年12月被列入实体名单,未经美商务部许可,相关公司不得向实体清单上的公司销售设备和相关零部件。

而这相关公司就包括荷兰ASML。荷兰ASML就是全球光刻机龙头,EUV光刻机的唯一制造商。

那么问题来了,既然买不到ASML光刻机,为什么不使用上海微电子的国产光刻机呢?

ASML的光刻机有多强

ASML中文名为阿斯麦,成立于1984年,总部位于荷兰埃因霍温,是全球最大的半导体设备制造商,也是全球EUV光刻机的唯一制造商。

出货量全球第一

2021年全球光刻机共生产478台,较2020年增长65台,涨幅为15%。其中ASML拿下了309台,占比65%。

中高端市场(DUV光刻机)出货103台,占据93.6%的市场份额,高端EUV光刻机出货42台,全部为ASML制造。

根据预测,2022年全球光刻机出货量将达到510台,ASML继续大幅领先。EUV光刻机出货量超过50台,制造商仍然只有ASML。

从出货量方面可以看出,ASML是妥妥的光刻机龙头,将日本尼康、佳能远远的甩在身后。

销售额全球第一

2021年,全球光刻机市场份额为1076亿,ASML一家就达到了854亿,占比79%。

2023年1月25日,ASML公布了2022年业绩,全年营收1562亿人民币,同比增长13.8%。净利润为412亿人民币,再创新高。

尽管2022年全球光刻机销售额尚未公布,但可以预料的是ASML的销售占比会继续扩大。

技术最强

在技术方面,ASML同样是当仁不让。

所有半导体设备中,EUV光刻机的技术含量是最高的,而它的制造商只有ASML一家,这足以反映出ASML在技术方面的实力。

可能有网友会说了,ASML只不过是组装大厂而已,它的技术含量仅为10%。但是,你千万不要小看了这10%。

ASML在EUV光刻机上的技术主要为极紫外光技术。

EUV光刻机的光源采用了13.5nm的极紫外光,大自然中没有这种光,只能人工制造。

首先要准备一台30KW的大功率激光发射器,可以发射频率高达50000HZ的高频激光。

然后再准备一台设备,这台设备有一个特殊的喷嘴,可以将融化的锡滴直径缩小至20微米左右,相当于“人类头发直径的三分之一”。

最后就是调试,要确保第一束激光准确的击中下落的锡滴,第二束激光再次击中锡滴,激发出极紫外光。

整个过程最难之处就是,持续性的高精度,高准确性。

光源设备最初由美国Cymer公司制造,后来被ASML收购。ASML也成为了极紫外光源技术的垄断者。

产业链最庞大

ASML的产业链也极其庞大,EUV光刻机的零部件高达10万个,仅供应商就近2000家,其中不乏蔡司、东京应化之类的行业巨头。甚至不少企业以进入ASML的供应链为荣。

而下游应用企业包括台积电、三星、英特尔、联电、格芯、中芯国际等众多芯片制造巨头。

我们手机搭载的苹果仿生、高通骁龙、华为麒麟、联发科天玑等等都离不开ASML的光刻机。

在组装方面,ASML同样具有极大的优势。

一台EUV光刻机拥有10万个零部件、4万个螺栓、2公里软管、3000条电缆和数吨重的镜片。这些零部件紧密相连,任何一个部件出现问题,都可能导致整台设备失控。

在进行安装作业时,一台火车驶过,传出10—20Hz的震动,就会导致设备失灵。

因此必须要有一个强大的组装团队。ASML的组装团队高达上万人,仅在中国区就超过了1300人。这些组装人员不仅技术高超,而且每年进行大量的培训。

如今ASML开始打造新一代光刻机——High NA EUV光刻机。

这套光刻机系统的镜片数值孔径将达到0.55 NA,具有更高的分辨率,更高的生产效率。据悉,未来将达到每小时220片晶圆的生产率。届时ASML将会更加强大。

在光刻机领域,ASML过于强大,以至于嚣张的说:“即便把图纸公开,中国也造不出光刻机。”

如今,在美国的压力下,ASML不仅拒绝为内地企业供货EUV光刻机,甚至连DUV光刻机也开始受到限制。

内地芯片代工龙头中芯国际就坦言,由于设备问题导致北京的晶圆厂无法顺利开工。那么为什么中芯国际不使用国产光刻机呢?

国产光刻机水平如何?

国产光刻机龙头是上海微电子设备公司,于2002年3月由上海市政府和中科院牵头成立,目前已经可以量产90nm光刻机。

那么上海微电子与ASML差距有多大呢?

技术差距

上海微电子制造的90nm光刻机,可以生产90nm芯片,重复光刻的话理论上可以生产45nm芯片,但是成品率会大幅下降。而ASML制造的EUV光刻机可以生产3nm芯片。

45nm芯片落后于3nm芯片整整5代,这需要数十年时间的追赶。

在具体核心技术方面,ASML已经掌握了先进的EUV技术,并且拥有大量的专利,而上海微电子却没有。

此外,在组装技术方面,上海微电子只能算得上“入门”,而ASML绝对称得上“专业”,这样的差距也绝非短时间内能够追平的。

生态差距

很多网友认为只有软件、 *** 作系统才有所谓的生态,其实硬件、设备同样有生态。

制造芯片的设备不仅有光刻机,还有涂覆、CVD、检测、清洗等十几种设备,这些设备需要相互配合,共同完成芯片制造。

如果不能匹配,那么整个芯片制造环节的工作量就会增加几倍。

ASML的光刻机广泛的应用在芯片制造领域,早已和各大厂家生产的其他设备相互兼容、相互配合。

此外在硅晶圆、掩膜版、光刻胶、CMP粉浆、高纯度液体、等半导体材料方面,ASML的光刻机同样与之相匹配,这些方面上海微电子仍需努力。

供应链差距

国产光刻机在供应链方面也表现出先天不足。

早在2009年时,上海微电子就研发出了90nm光刻机,并通过了验收,但直到2018年才宣布,这是为什么呢?

因为当时,这批设备采用了德国蔡司的镜头,而当时的蔡司突然接到命令,停止为上海微电子供货。

失去了蔡司供货,国产镜头又达不到要求,只好延迟发布。很多网友觉得一个小小的镜片就能卡住国产光刻机的脖子?

真的不要小看了这小小的镜片,它的数值孔径为0.93NA,分辨率为90nm,平整度要求极高,几十公里的起伏度不能超过一毫米。

为了研发这样的一组镜片,长春国科精密光学用了近10年的时间,才研发成功。

2018年,这组镜片成功安装在了上海微电子的光刻机上,经过测试达到了相关要求。

除了镜片外,还有光源、工作台、精密轴承等近10万个零部件,这些都需要众多的供应商来解决。

据悉,ASML拥有来自欧美日韩等国近2000家供应商,而上海微电子被列入美商务部“实体清单”后,只能采用国产配件,这让其供应链大打折扣。

此外,上海微电子的光刻机在稳定性方面也比不上ASML,而稳定性关系到芯片的良品率。没有人希望自己的芯片在制造时,因为设备问题而报废。

总的来说,国产光刻机在技术、生态、供应链、稳定性等多个方面落后于ASML,要想掌握EUV光刻机技术,追上ASML的水平,还需要很长的时间。

此外,中芯国际北京晶圆厂,制造的芯片是28nm工艺的,只有荷兰ASML和日本尼康的光刻机符合要求。

这就是为什么,中芯国际等国产芯片代工厂不愿意选择国产光刻机的主要原因。

中芯国际如何破解难题?

中芯国际要想解决芯片制造难题,就要融入国产光刻机的产业链。试想一下,大家都不使用上海微电子的光刻机,那如何验证它的水平,发现它的不足之处呢?

上海微电子卖不出设备,也就无法盈利,也就拿不出更多的资金去研发高端光刻机,也就无法解决国产芯片的设备难题。

所以中芯国际在90nm芯片制造环节上,还是要优先选择国产设备。

正视不足、拒绝浮夸

最近网上一直充斥着,上海微电子已经研发出28nm、14nm的光刻机、甚至7nm光刻机也即将量产。

实际上,光源系统、透镜、浸没式、双工作台等核心技术,我们还差距很大。要想完全掌握这些技术还需要付出大量的人力、物力、财力和时间。

同时,我们在稳定性方面也远比不上ASML。这就需要加强我们的售后和组装技术。

心无旁骛、持续研发

搞研发最忌讳心浮气躁,断断续续。一看到能买,就想放弃研发,认为“造不如买”。然而,当你自废武功后,各种打压就会接踵而至。

科技没有捷径,也没有所谓的“弯道超车”,有的只是不断投入、持续研发。甚至是数十年如一日。

政策支持,集中力量办大事

政策支持有多重要呢?我们以日本为例来说。

日本的半导体就得到了美国的支持和授权后,才快速发展起来的。这个支持和授权就来自美国政府,最初目的是扶持日本对抗当年的苏联。

三菱、京都电气拿到了仙童公司的授权后,日本通产省就制定了相关政策,组织NEC、日立、富士通、东芝和三菱电机成立了“超大规模集成电路技术研究组合”。

此后,日本在半导体产业快速的发展,直至超越美国。

1985年,美国就针对日本半导体发起了第一次301调查,并在1986年迫使日本签署了日美半导体协议。

此后,日本半导体行业开始快速下滑,市场份额从53%的高点下降至7%。到今天,全球领先的半导体设计、制造公司已经看不到日本企业的踪影了。

可见,政策对芯片的影响力着实太大了。

如果我们能够出台持续的正确的产业政策,那么国产芯片逆袭超越是迟早的事。

写到最后

光刻机被限,中芯国际斥巨资建造的晶圆厂迟迟不能投产,归根结底就是国产光刻机的落后造成的。

如果我们能够正视自身的不足,加大研发力度,再配以对应的政策,相信国产光刻机技术必会大幅提升。

同时,我们的芯片企业也要支持使用国产光刻机,发现问题,解决问题。

我是科技铭程,欢迎共同讨论!

天降惊喜二选一

阅读惊喜奖励

领金币

种树赚金币

去查看

搜索

国产光刻机最新消息

外媒看哈工大光刻机

中芯国际会造光刻机吗

北京中芯国际最新消息

光刻机

上海微电子


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9025284.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存