室温下,Si的带隙为1.1eV,GaAs的带隙为1.43eV,一般把室温下带隙大于2.0eV的半导体材料归类于宽带隙半导体,宽带隙半导体在蓝、紫光和紫外光电子器件,高频、高温、高功率电子器件及场发射器件方面应用广泛。
半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带(ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。由于半导体的光吸收阈值与带隙具有式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。 硅(Si)是研究较早的半导体材料,是第一代半导体的代表。半个多世纪以来,硅半导体技术的长足发展极大地促进了电力和电子技术的进步。尤其到了20世纪70年代,集成电路制造技术的成熟,奠定了硅在整个半导体行业中的领军地位。目前,除了极少数微波加热电源还使用真空电子管之外,几乎所有的电力和电子器件都使用Si材料来制造。尤其在集成电路中,99%以上用的都是Si半导体材料。然而随着科学的进步和半导体技术的发展,Si由于材料本身的特点在某些应用领域的局限性逐渐表现出来。例如,其带隙较窄(~1.12eV)、载流子迁移率和击穿电场较低等,限制了其在光电子领域以及高频、高功率器件方面的应用L1。 第三代半导体也称为宽带隙半导体(禁带宽度超过2.0eV),如金刚石、碳化硅(SiC)、Ⅲ一V族氮化物、Ⅱ一Ⅵ族Zn基化合物及其固溶体等。其中以金刚石、SiC、氮化镓(GaN)和氧化锌(ZnO)为第三代半导体的代表材料。宽带隙使第三代半导体具有许多共同的性能特点,包括高熔点、高临界击穿电场、高热导率、小的介电常数、大的激子束缚能、大的压电系数以及较强的极化效应等。 SiC电学性能 SiC具有较高的临界击穿电场、高热导率和饱和电子迁移率等特点,适合于制造大功率、高温、高频和抗辐射的半导体器件。SiC热导率是si的3倍,SiC材料优良的散热性有助于提高器件的功率密度和集成度。SiC材料形态决定其禁带宽度的大小,但均大于si和GaAs的禁带宽度,降低SiC器件的泄漏电流,加上SiC的耐高温特性,使得SiC器件在高温电子工作领域优势明显。因其具有高硬度和高化学稳定性等特点,使得SiC材料能胜任恶劣的工作环境。一维SiC纳米材料具有较高的禁带宽度,可由间接带隙半导体转变为直接带隙半导体,高强高韧等特点;适用于制造在恶劣环境下使用的电子器件。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)