2、其次一个芯片往往包含了数百万甚至上千万个晶体管以及其他元器件,每一点小小的偏差的累加可能造成半导体外部特性的巨大影响。
3、最后如果温度过低,往往会造成芯片在额定工作电压下无法打开其内部的半导体开关,导致其不能正常工作。
低温在半导体中的应用是研究红外光谱的重要手段之一。红外光谱技术在半导体材料的结构成份分析中有广泛的应用它比常温测量有许多优点如随着温度的降低半导体中杂质的特征吸收峰光大大减小,吸收峰变锐,峰值波数处的吸收系数大大增加因此可以较容易地同低温下减弱的晶格吸收宽带背景区分开来.从而提高检测灵敏度另外在低温高分辨下可观察半导体材料红外光谱的精细结构及其随温度。因为半导体是靠电子和空穴的移动导电。未掺杂的半导体叫本征半导体,一般说来导电性远不如掺过杂的半导体,所以一般使用的都是掺杂半导体。掺入的杂质电离出的电子和空穴增强了半导体导电性,其电离率和温度密切相关,所以温度会影响半导体材料的电阻率。对于掺杂半导体:温度很低时,本征激发忽略,主要由杂质电离提供载流子,它随温度升高而增加;散射主要由电离杂质决定,迁移率随温度升高增大,所以电阻率下降。温度继续升高,杂质全部电离,本征激发还不显著时,载流子基本不变,晶格振动是主要影响因素,迁移率随温度升高而降低,所以电阻率随温度升高而增大。温度继续升高到本征激发快速增加时,本征激发称为主要影响因素,表现出同本证半导体相同的特征。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)