在金属中,响应外加场的电子密度非常大,以至于外部电场只能穿透很短的距离进入材料。然而,在半导体中,可以响应外加场的较低密度的电子(可能还有空穴)足够小,以至于场可以穿透到材料中很远。这种场穿透会改变半导体表面附近的导电性。
发生表面电导的变化是因为施加的场将电子可用的能级改变到距离表面相当大的深度,这反过来又改变了表面区域中能级的占有率。对这种效应的典型处理是基于带弯曲图,该图显示了带边缘的能量位置作为材料深度的函数。
两层结构由绝缘体作为左侧层和半导体作为右侧层。这种结构的一个例子是MOS 电容器,它是一种由金属栅极触点、具有体触点的半导体本体(例如硅)和中间绝缘层(例如二氧化硅)组成的双端子结构,因此指定O)。
导带的最低能级和价带的最高能级。这些电平被正电压V的施加“弯曲” 。
由绝缘体作为左侧层和半导体作为右侧层。这种结构的一个例子是MOS 电容器,它是一种由金属栅极触点、具有体触点的半导体本体 (例如硅)和中间绝缘层(例如二氧化硅)组成的双端子结构,因此指定O)。导带的最低能级和价带的最高能级。这些电平被正电压V的施加“弯曲” 。
按照惯例,会显示电子的能量,因此穿透表面的正电压会降低导电边缘。虚线描绘了占据情况:低于该费米能级的状态更可能被占据,导带向费米能级靠拢,表明更多电子在绝缘体附近的导带中。
组成
FET由各种半导体构成,目前硅是最常见的。大部分的FET是由传统块体半导体制造技术制造,使用单晶半导体硅片作为反应区,或者沟道。
大部分的不常见体材料,主要有非晶硅、多晶硅或其它在薄膜晶体管中,或者有机场效应晶体管中的非晶半导体。有机场效应晶体管基于有机半导体,常常用有机栅绝缘体和电极。
目前主板或显卡上使用的MOS管并不太多,一般有10个左右。主要原因是大部分MOS管集成在IC芯片中。因为MOS管主要为配件提供稳定的电压,所以一般用在CPU、AGP插槽、内存插槽附近。其中,CPU和AGP插槽附近布置了一组MOS管,而内存插槽共用一组MOS管。一般来说,MOS管两个一组出现在主板上。工作原理双极晶体管将输入端的小电流变化放大,然后在输出端输出大的电流变化。双极晶体管的增益定义为输出电流与输入电流之比(β)。另一种晶体管叫FET,把输入电压的变化转化为输出电流的变化。它们是电流控制装置和电压控制装置。FET的增益等于其跨导)gm,跨导定义为输出电流的变化与输入电压的变化之比。FET的名字也来源于它的输入栅极(称为gate),它通过在绝缘层(氧化物SIO2)上投射电场来影响流经晶体管的电流。实际上没有电流流过这个绝缘体(只是电容的作用),所以FET的栅极电流很小(电容的电流损耗)。最常见的FET在栅电极下使用一薄层二氧化硅作为绝缘体。这种晶体管被称为金属氧化物半导体(MOS)晶体管,或金属氧化物半导体场效应晶体管(MOSFET)。MOS管的原理:
它是利用VGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。
作用:
1、可应用于放大电路。由于MOS管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
2、很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。
3、可以用作可变电阻。
4、可以方便地用作恒流源。
5、可以用作电子开关。
简介:
mos管,即在集成电路中绝缘性场效应管。是金属(metal)—氧化物(oxid)—半导体(semiconductor)场效应晶体管。或者称是金属—绝缘体(insulator)—半导体。MOS管的source和drain是可以对调的,都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。
结构特点:
MOS管的内部结构如下图所示其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET,大大提高了MOSFET器件的耐压和耐电流能力。
n沟道mos管
p沟道mos管
其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻,该管导通时在两个高浓度n扩散区间形成n型导电沟道。n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS管。n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)