半导体光电子器件的原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
利用半导体光-电子(或电-光子)转换效应制成的各种功能器件。它不同于半导体光器件(如光波导开关、光调制器、光偏转器等)。
光器件的设计原理是依据外场对导波光传播方式的改变,它也有别于早期人们袭用的光电器件。后者只是着眼于光能量的接收和转换(如光敏电阻、光电池等)。
早期的光电器件只限于被动式的应用,60年代作为相干光载波源的半导体激光器的问世,则使它进入主动式应用阶段,光电子器件组合应用的功能在某些方面(如光通信、光信息处理等)正在扩展电子学难以执行的功能。
优劣对比)半导体指纹识别的优劣
随着成本的下降,越来越多的指纹锁企业选择半导体指纹识别模块。那么指纹识别模块有哪些优势呢?它缺点有表现在哪些地方呢?
一、半导体指纹识别的优势
1.半导体指纹识别模块只识别活体指纹,安全性高。也就是说半导体指纹头可穿透皮肤表发层,所以网上盛传的硅胶模拟指纹在这里基本上起不到什么作用,识别活体指纹的好处在于指纹基本上不能复制或是仿制。
2.半导体指纹识别模块具有非常高的灵敏度和识别精度。半导体指纹识别是由上万个电容器组成电容阵列,采集指纹脊和谷到触板的距离形成指纹数据,相比与光学扫描精度更好,能采集更精细的指纹细节,采集速度也更快。
3. 半导体指纹识别模块识别率高。光学指纹头正常使用中会受到指纹干湿、深浅的影响,导致识别错误和无法识别指纹的现象,而半导体可最大程度免除这些问题。
此外,半导体还功耗小,体积小等等优势,对降低智能锁功耗和缩小锁具大小有很大的帮助。
二、半导体指纹识别的不足
1.半导体指纹识别模块造价稍高。半导体指纹识别模块的电容版显然比比光学指纹模块的钢化玻璃的成本要高,当然其他部件的成本也相对高于光学指纹模块,所以造价较高,但随着行业的发展,两者的价格差逐渐变小。
2. 半导体指纹识别模块不易保养。 半导体指纹头的采集窗会受到污渍汗渍以及静电的影响,且容易被划花,所以需要使用时需要注意保护和保养,不然使用寿命难以保障。
光学指纹识别的优劣
目前由于光学指纹识别模块造价低,适应性强等原因广泛应用于各大领域,目前许多低端指纹锁使用的也是光学指纹识别模块。
近日,半导体领域迎来重磅消息,南大光电的ArF光刻胶取得突破,国产光刻胶终于来了!
南大光电光刻胶突破
早在5月30日,南大光电就已经发布公告称,公司自主研发的ArF光刻胶产品通过客户认证,具备55nm工艺要求。
7月2日,有报道称,南大光电的ArF光刻胶产品目前已经拿到了小批量订单。
这都在表明,国产光刻胶终于不再受制于人,而是实现国产化了。
芯片在制造过程中,除了硅这种主要材料之外,一些辅助材料也至关重要,其中有一种名为光刻胶的材料,在芯片制造过程中必不可少,然而,这个材料却长期被日本垄断,中国也在这方面一直被卡脖子。
而最近传出的一个消息,对我国半导体的发展非常不利,日本对中国供应的光刻胶出现了“断供”的现象。美国召开G7峰会后,日本宣布光刻胶断供中国,日本信越化学等光刻胶企业开始限制供应ArF光刻胶产品。
断供光刻胶,对半导体行业的人而言并不陌生,2019年日韩贸易冲突白热化,日本就断供了光刻胶,导致当时全球最大的芯片厂商三星陷入了困境之中。
虽然韩国积极向日本低头求和并开展自救,但芯片生产依然受到巨大影响,间接推动了2020年的芯片短缺。
巧妇难为无米之炊,没有了光刻胶,对于中国的晶圆厂而言是巨大的打击,芯片生产将被迫停止!
好在,光刻胶的国产化进程并不慢,日企断供短短半年时间,南大光电就已经将国产光刻胶投入市场中了。
南大光电,成立于2000年12月,是以南京大学国家863计划研究成果作为技术支持的中国高纯金属有机化合物MO源的产业化基地。
1986年,863计划启动,在高济宇院士的支持和指导下,学者孙祥祯牵头进行MO源的技术攻关。MO源是一种禁运物资,更是生产化合物半导体的源头材料,对我国国防安全、高 科技 民族工业有重要意义。
历经重重困难,孙祥祯带领的课题组终于研制出了纯度大于5.5N的多个品种的MO源,全面向国内近20家研究单位供货,缓解了我国对MO源的急求。
这项工艺不仅促进了国防工业的发展,更为国内化合物半导体材料的发展奠定了原始的基础。
孙祥祯退休后,带领年轻人创立了南大光电,注册资本3770万元,生产拥有自主知识产权的高纯金属有机化合物,是国内唯一实现MO源产业化的企业,公司的技术主要来源便是南京大学863计划中的项目。
公司主要产品有三甲基镓,三甲基铟,三甲基铝,二茂镁等十几种MO源,在产品的合成、纯化、分析、封装、储运及安全 *** 作等方面已达到国际先进水平,产品远销日本、韩国、欧洲市场,并占有大陆70%的市场份额。
作为国内唯一将半导体光学原材料实现量产的企业,南大光电对于光刻胶可以说十分熟悉,也是最有可能突破光刻胶技术的企业。
中国半导体在崛起
光刻胶到底是做什么用的呢?
芯片生产过程中,需要用光学材料将数以万计的电路刻在小小的7nm的芯片上,而这种辅助的光学材料,就是光刻胶。
在光刻胶领域,材料主要分为四种,分别为g线、i线、KrF、ArF光刻胶,半导体工艺越高,光刻机的精度越高,照射的光线频率越高,波长越短。
光刻胶的分辨率会随着光线频率的改变而不断变化,基本的演进路线是:g线(436nm) i线(365nm) KrF(248nm) ArF(193nm) F2(157nm) EUV(
其中,ArF光刻胶的制造难度是最高的,这也是14nm/7nm芯片制造过程中不可或缺的原材料。
芯片的工艺也分等级,平板电脑、 汽车 芯片等工艺水平并不高,这各等级的芯片中国已经实现了从光刻机到芯片的完全自主化生产。真正困难的在于7nm的芯片,也就是华为遭到断供的手机芯片。
这种工艺的手机芯片,不仅需要荷兰ASML先进的EVU光刻机来生产,更需要高端的光刻胶作为辅助材料,以及大量的芯片原材料,才能成功生产出华为手机所需要的芯片。
光刻机被美国和荷兰的公司垄断,现在EVU光刻机对中国处于断供状态,中芯国际花了12亿购买的EVU光刻机至今仍未到货;
芯片原材料,虽然国内已有部分原材料实现自主生产,但是硅片、光掩模、电子特气、抛光材料、溅射靶材、光刻胶以及湿电子化学品这其中原材料完全依赖进口。
在全球光刻胶市场,日本东京应化,JSR,住友化学,信越化学等企业,掌握了全球半导体光刻胶市场的90%左右份额,几乎是垄断的状态。
方正证券的报告显示,中国大陆企业在全球光刻胶领域占有率不到13%,在半导体光刻胶领域更是不足5%,完全被日本卡了脖子!
但是,进入2021年以后,中国半导体行业国产化的趋势越来越强!
首先是光刻机领域,上海微电子已经实现28nm光刻机的量产,预计2022年可以交付,这款光刻机的性能与荷兰ASML的DVU光刻机相似,可以生产14nm制程工艺的芯片。
另外,美国虽然断供了最先进的EVU光刻机,但是制程工艺相对较低的DVU光刻机却没有断供,而荷兰ASML也明确表态过,EVU光刻机也可以用于7nm工艺芯片,英特尔的10nm工艺、台积电第一个7nm芯片,都是用DVU光刻机实现。
这意味着,2022年,现有的光刻机技术或许能够提前量产华为所需的7nm芯片,打破美国封锁。
而生产7nm工艺芯片所需要的ArF光刻胶,在7月2日就已经有国外企业向南大光电订购了,这意味着半导体光刻胶原材料也实现了自主化。
另外,南大光电,容大感光、上海新阳等国内企业,也在持续研发高端光刻胶,争取在现有技术上进一步突破,追上日本的光刻胶技术。
剩下的6种完全依赖进口的原材料,国内的企业肯定也已经发现了商机,正在朝着国产化转变;最关键的两项技术突破后,中国实现手机芯片国产化的日子也就不远了。
空谈误国、实干兴邦,中国的半导体行业,正在默默地奋力追赶,一如这次南大光电突然给市场来个惊喜一样,未来还将会看到更多的一鸣惊人的突破。
中国半导体,正在以惊人的速度崛起!
作者 | 金莱
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)