pn结指的是什么?

pn结指的是什么?,第1张

p-n结是半导体单晶内两种半导体材料p型和n型之间的边界或界面。

“p”(正)侧包含过量的空穴,而“n”(负)侧在电中性原子的外壳中包含过量的电子。这允许电流仅沿一个方向通过结。

pn结是通过掺杂产生的,例如通过离子注入、掺杂剂的扩散或通过外延。(在用另一种类型的掺杂剂掺杂的晶体层上生长一层用一种类型的掺杂剂掺杂的晶体)。如果使用两块单独的材料,这将在半导体之间引入晶界,从而通过散射电子和空穴而严重抑制其效用。

p-n 结是半导体电子器件的基本“构件”,例如二极管、晶体管、太阳能电池、LED和集成电路;它们是设备的电子动作发生的活动场所。

例如,一种常见类型的晶体管,双极结型晶体管,由两个串联的 p-n 结组成,形式为 n-p-n 或 p-n-p;而二极管可以由单个pn结制成。肖特基结是 ap-n 结的一种特殊情况,其中金属起到 n 型半导体的作用。

1、N型半导体

掺入少量杂质磷元素(或锑元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,磷原子外层的五个外层电子的其中四个与周围的半导体原子形成共价键,多出的一个电子几乎不受束缚,较为容易地成为自由电子。

于是,N型半导体就成为了含自由电子浓度较高的半导体,其导电性主要是因为自由电子导电。

2、P型半导体

掺入少量杂质硼元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的离子。

这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。

3、PN结的形成

采用一些特殊的工艺(见本条目后面的段落),可以将上述的P型半导体和N型半导体紧密地结合在一起。在二者的接触面的位置形成一个PN结。

属性

p-n 结具有现代电子学的基本特性。p 掺杂的半导体是相对导电的。n 掺杂半导体也是如此,但它们之间的结可能耗尽电荷载流子,因此不导电,这取决于两个半导体区域的相对电压。

通过 *** 纵这个非导电层,p-n 结通常用作二极管:允许电流在一个方向但不允许在另一个(相反)方向流动的电路元件。偏置是在 ap-n 结上施加电压;正向偏置是在容易的电流流动的方向,并且反向偏置是指电流很少或没有电流流动的方向。

p-n 结的正向偏置和反向偏置特性意味着它可以用作二极管。p-n 结二极管允许电荷沿一个方向流动,但不能沿相反方向流动;负电荷(电子)可以很容易地通过结从 n 流到 p,但不能从 p 流到 n,而空穴则相反。

当 p-n 结正向偏置时,由于 p-n 结的电阻减小,电荷自由流动。然而,当 p-n 结反向偏置时,结势垒(因此电阻)变得更大,电荷流最小。

锗、硅、硒、砷化镓及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。

半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。

半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。

把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。

费米能级钉扎效应是半导体物理中的一个重要概念。本来半导体中的Fermi能级是容易发生位置变化的。例如,掺入施主杂质即可使Fermi能级移向导带底,半导体变成为n型半导体;掺入受主杂质即可使Fermi能级移向价带顶,半导体变成为p型半导体。但是,若Fermi能级不能因为掺杂等而发生位置变化的话,那么就称这种情况为费米能级钉扎效应。在这种效应起作用的时候,往半导体中即使掺入很多的施主或者受主,但不能激活(即不能提供载流子),故也不能改变半导体的型号,也因此难于通过杂质补偿来制作出pn结。产生费米能级钉扎效应的原因,与材料的本性有关。宽禁带半导体(GaN、SiC等)就是一个典型的例子,这种半导体一般只能制备成n型或p型的半导体,掺杂不能改变其型号(即Fermi能级不能移动),故称为单极性半导体。一般,离子性较强的半导体(如Ⅱ-Ⅵ族半导体,CdS、ZnO、ZnSe、CdSe)就往往是单极性半导体。这主要是由于其中存在大量带电缺陷,使得费米能级被钉扎住所造成的。正因为如此,采用GaN来制作发兰光的二极管时,先前就遇到了很大的困难,后来通过特殊的退火措施才激活了掺入的施主或受主杂质,获得了pn结——制作出了发兰色光的二极管。非晶态半导体也往往存在费米能级钉扎效应。制作出的非晶态半导体多是高阻材料,Fermi能级不能因掺杂而移动,这也是由于其中有大量缺陷的关系。此外,半导体表面态密度较大时也往往造成费米能级钉扎效应。这在M-S系统和MOS系统中起着重要的作用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9131044.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存