挥发性有机化合物,简称VOCs,是指在常压下沸点**260℃或室温时饱和蒸汽压大于71Pa的有机化合物。VOCs的种类很多,其中常见的是用于工业溶剂的芳香烃、醇类、酷类和醛类。多数的VOCs有毒、有恶臭,甚至有致癌性,对人体和环境产生很大的危害,都通过立法不断限制VOC的排放量。
VOC的来源主要有固定源和移动源两种。移动源主要有汽车、轮船和飞机等以石油产品为燃料的交通工具的排放气固定源的种类很多,主要为石油化工工艺过程和储存设备等的排出物及各种使用有机溶剂的场合,如喷漆、印刷、金属除油和脱脂、粘合剂、制药、塑料和橡胶加工等。除了这些大污染源外,还有日常生活中随处可见的小污染源,如油漆、涂料、地板腊等。就目前的技术水平而言,无法避免这些气相污染物的排放,因此人们迫切需要有效治理这些气相污染物的技术。
VOC废气处理
目前VOC处理方法有非破坏性方法、破坏性方法和两者的联合方法。非破坏性方法即回收法,主要有炭吸附、变压吸附、吸收法、冷凝法及膜分离技术一般是通过物理方法,改变温度、压力或采用选择性吸附剂和选择性渗透膜等方法来富集分离VOC破坏性方法有直接燃烧、热氧化、催化燃烧、生物氧化、等离子体法、紫外光催化氧化法及其集成技术:主要是通过化学或生化反应,用热、光、催化剂和微生物将VOC转变成为CO:和水等无毒害的无机小分子化合物。传统上VOC的废气处理常采用吸附或吸收去除、燃烧去除等方法,近年来生物氧化、等离子体、半导体光催化剂技术得到很的发展。
低温等离子体技术处理污染物的原理为在外加电场的作用下,介质放电产生的大量高能电子轰击污染物分子,使其电离、解离和激发;然后引发一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变成无毒无害或低毒低害物质,从而使污染物得以降解去除。低温等离子体技术对大气量、低浓度的污染气体有较高的处理效率,是性价比非常高的有效处理技术。该方法具有效率高、成本低、设备适应性强、占地面积小、便于 *** 作控制、开停方便、与喷漆工艺同步、可根据污染物源强和排放要求进行升级等优点。单一等离子体处理有机废气效率较高且副产物较少,不会造成二次污染,但其较高的能耗和较低的能量效率是目前需要攻克的难题,等离子复合光催化可以弥补其缺点。等离子体催化剂选用TiO2,其为宽禁带(Eg=3.2eV)半导体化合物,只有波长较短的太阳光才能被吸收,激发其活性,所以设计反应装置的时候需要添加紫外光源。
1. 吸附法\x0d\x0a吸附法利用某些具有吸附能力的物质如活性炭、硅胶、沸石分子筛、活性氧化铝等具有多孔材料吸附有害成分而达到消除有害污染的目的。微孔和介孔材料已被广泛应用于吸附过程。然而,在实践中遇到的最常见的多孔材料(如活性炭,硅胶和分子筛)的一些缺点,如低的吸附能力,易燃性,并有与再生有关的其他问题。因此,人们一直专注新型多孔材料的吸附能力,快速反应动力学和高可逆性。吸附法的优点在于去除效率高、能耗低、工艺成熟、脱附后溶剂可回收。缺点在于是设备庞大,流程复杂,投资后运行费用较高且有二次污染产生,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。\x0d\x0a吸附法其吸附效果主要取决于吸附剂性质、气相污染物种和吸附系统工艺条件(如 *** 作温度、湿度等因素),因而吸附法的关键问题就在于对吸附剂的选择。吸附剂要具有密集的细孔结构,内表面积大,吸附性能好,化学性质稳定,耐酸碱,耐水,耐高温高压,不易破碎,对空气阻力小。常用的吸附剂主要有活性炭(颗粒状和纤维状)、活性氧化铝、硅胶、人工沸石等。\x0d\x0a吸附法与其它净化方法的集成技术治理众多行业的有机废气,在国内得到了推广应用。如采用液体吸附和活性炭吸附法联合处理高浓度可回收苯乙烯废气采用吸附法和催化燃烧法联合处理丙酮废气等。吸附法与其它净化方法联用后不仅避免了两种方法各自的缺点,而且具有吸附效率高,无二次污染等特点。\x0d\x0a2. 溶剂吸收法\x0d\x0a以液体溶剂作为吸收剂,使废气中的有害成分被液体吸收,从而达到净化的目的,其吸收过程是根据有机物相似相溶原理,常采用沸点较高、蒸气压较低的柴油、煤油作为溶剂,使VOC从气相转移到液相中,然后对吸收液进行解吸处理,回收其中的 VOC,同时使溶剂得以再生。该法不仅能消除气态污染物,还能回收一些有用的物质,可用来处理气体流量一般为3000~15000 m3/h、浓度为0.05%~0.5%(体积分数)的VOC,去除率可达到95%~98%。\x0d\x0a该法的优点在于对处理大风量、常温、低浓度有机废气比较有效且费用低,而且能将污染物转化为有用产品。但溶剂吸收法仍有不足之处,由于吸收剂后处理投资大,对有机成分选择性大,易出现二次污染。因而在处理VOC时需要选择多种不同溶剂分别进行吸收,较大增加了成本与技术复杂性。另外,有机物在吸收剂中的溶解度、有机废气的浓度、吸收器的结构形式,如填料塔、喷淋塔,液气比、温度等 *** 作参数等均为吸收法的影响因素,任何一项发生改变将或多或少影响到吸收法效用。\x0d\x0a3. 热氧化法\x0d\x0a热氧化法分为直接燃烧法、催化燃烧法和浓缩燃烧法。其破坏机理是氧化、热裂解和热分解,从而达到治理VOCs的目的。热破坏法适合小风量,高浓度的气体处理,对于连续排放气体的场合,使用设备简单,投资少, *** 作方便,占地面积少,另外可以回收利用热能,气体净化彻底。由于热破坏法是催化燃烧,所以要求的起燃温度低,大部分有机物在250~400℃即可完成反应,故辅助燃料消耗少,而且大量地减少了氮化物的产生,适用于较多场合。但热破坏法有燃烧爆炸危险,热力燃烧需消耗燃料,不能回收溶剂。而热催化氧化法中不允许废气中含有影响催化剂寿命和处理效率的尘粒和雾滴,也不允许有使催化剂中毒的物质,以防催化剂中毒,因此采用催化燃烧技术处理有机废气必须对废气作前处理。\x0d\x0a4. 生物处理法\x0d\x0a生物处理技术应用于有机废气的净化处理是近几年才开始的,是一项新兴的技术。常见的生物处理工艺包括生物过滤法、生物滴滤法、生物洗涤法、膜生物反应器和转盘式生物过滤反应器法。\x0d\x0a生物膜法是利用微生物的新陈代谢过程对多种有机物和某些无机物进行生物降解,生成CO2和H2O,进而有效去除工业废气中的污染物质。该法具有设备简单,运行维护费用低,无二次污染等优点。但对成分复杂的废气或难以降解的VOC,去除效果较差,体积大和停留时间长,选用不同的填料其降解有机废气的效果参差不同。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)