半导体光电子器件的原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
利用半导体光-电子(或电-光子)转换效应制成的各种功能器件。它不同于半导体光器件(如光波导开关、光调制器、光偏转器等)。
光器件的设计原理是依据外场对导波光传播方式的改变,它也有别于早期人们袭用的光电器件。后者只是着眼于光能量的接收和转换(如光敏电阻、光电池等)。
早期的光电器件只限于被动式的应用,60年代作为相干光载波源的半导体激光器的问世,则使它进入主动式应用阶段,光电子器件组合应用的功能在某些方面(如光通信、光信息处理等)正在扩展电子学难以执行的功能。
一、材料准备审核部网站有个审核材料清单的PDF文件,根据此清单来不会出问题:
1.需要的在线注册证明,中小学有官方英文名称,直接填写就好,如果没有的话直接汉语拼音的全拼,适当加个空格。
2.大学录取花名册、在读证明和成绩单可以直接放入学校的密封袋(一般大学都有提供),省去了公证,这三样都需要双语件,可以去公证翻译,这样的话就不需要密封袋。如果学校可以开具以上三种文件的双语件最好。
3.高中毕业证要翻译公证;
二、 复习准备
在ABCDV论坛上搜刮过一些前辈的资料。这些课程有一些主次顺序,工科的把偏向实际应用的课程要稍微多花心思:
最终分成了一下几个大类(括号内是实际课本名称):
1.光学类:激光原理、物理光学、应用光学、信息光学、半导体光学
2.通信类:光纤理论与技术(光纤光学)、通信原理与技术(光纤通信)、现代通信原理
3.光电类:光电检测技术、生物医学光子学
4.软件类:光学图像处理、Matlab程序设计
5.物理类:量子理论与固体物理概论、电磁学、电磁场理论
6.电学类:电路基础、信号系统、(现在通信原理)
7.实验类
分类好了之后就是整理,基本知识点列出关键单词,自己联系叙述知识点;重要而且不太熟悉知识点可以完整的摘录,解释;每个课程的经典例子要知道,能说出来”。这样一来,大部分课程除了基本知识点的关键词以外,差不多可以整理出6个点。
大致的过一遍你整理的知识点,快速浏览一遍就好。接下来就是串知识点。现在审核很灵活,所以大家必须也要把知识点给记”活“,一记忆起来更有效,二来审核时会讨巧。
举例说:激光里面提到朗伯比尔定理,但是我在生物医学光子学这门课也学到了,虽然是同样的定理,但是表达形式不一样;
再比如我光纤通信学到过EDFA,我的光纤光学里详细的讲过,这个可以一起记忆,一个是原理,一个是实际运用;
半导体的知识,固体物理学过理论,光纤通信学过应用,半导体光学介绍过在光学领域的半导体的知识,三门课都能用上了!
这些个例子大家应该可以理解其中的意义了:如果在面试时你一门课忘记点了,可以从其他课里面抽相似点来;如果谈到了某个知识点,在多个领域来解释说明,这样审核官会很高兴!
三、审核面谈
下午审核的电子和机械,但是考试官很会扣细节,但是这些细节不算太深;而且会挖坑,不经意问考生一些问题,这些问题可能很小,但是一不注意说不定会栽进去!
所以大家准备审核时一定要到位,基本知识点千万不能有原则上的错误!
近日,半导体领域迎来重磅消息,南大光电的ArF光刻胶取得突破,国产光刻胶终于来了!
南大光电光刻胶突破
早在5月30日,南大光电就已经发布公告称,公司自主研发的ArF光刻胶产品通过客户认证,具备55nm工艺要求。
7月2日,有报道称,南大光电的ArF光刻胶产品目前已经拿到了小批量订单。
这都在表明,国产光刻胶终于不再受制于人,而是实现国产化了。
芯片在制造过程中,除了硅这种主要材料之外,一些辅助材料也至关重要,其中有一种名为光刻胶的材料,在芯片制造过程中必不可少,然而,这个材料却长期被日本垄断,中国也在这方面一直被卡脖子。
而最近传出的一个消息,对我国半导体的发展非常不利,日本对中国供应的光刻胶出现了“断供”的现象。美国召开G7峰会后,日本宣布光刻胶断供中国,日本信越化学等光刻胶企业开始限制供应ArF光刻胶产品。
断供光刻胶,对半导体行业的人而言并不陌生,2019年日韩贸易冲突白热化,日本就断供了光刻胶,导致当时全球最大的芯片厂商三星陷入了困境之中。
虽然韩国积极向日本低头求和并开展自救,但芯片生产依然受到巨大影响,间接推动了2020年的芯片短缺。
巧妇难为无米之炊,没有了光刻胶,对于中国的晶圆厂而言是巨大的打击,芯片生产将被迫停止!
好在,光刻胶的国产化进程并不慢,日企断供短短半年时间,南大光电就已经将国产光刻胶投入市场中了。
南大光电,成立于2000年12月,是以南京大学国家863计划研究成果作为技术支持的中国高纯金属有机化合物MO源的产业化基地。
1986年,863计划启动,在高济宇院士的支持和指导下,学者孙祥祯牵头进行MO源的技术攻关。MO源是一种禁运物资,更是生产化合物半导体的源头材料,对我国国防安全、高 科技 民族工业有重要意义。
历经重重困难,孙祥祯带领的课题组终于研制出了纯度大于5.5N的多个品种的MO源,全面向国内近20家研究单位供货,缓解了我国对MO源的急求。
这项工艺不仅促进了国防工业的发展,更为国内化合物半导体材料的发展奠定了原始的基础。
孙祥祯退休后,带领年轻人创立了南大光电,注册资本3770万元,生产拥有自主知识产权的高纯金属有机化合物,是国内唯一实现MO源产业化的企业,公司的技术主要来源便是南京大学863计划中的项目。
公司主要产品有三甲基镓,三甲基铟,三甲基铝,二茂镁等十几种MO源,在产品的合成、纯化、分析、封装、储运及安全 *** 作等方面已达到国际先进水平,产品远销日本、韩国、欧洲市场,并占有大陆70%的市场份额。
作为国内唯一将半导体光学原材料实现量产的企业,南大光电对于光刻胶可以说十分熟悉,也是最有可能突破光刻胶技术的企业。
中国半导体在崛起
光刻胶到底是做什么用的呢?
芯片生产过程中,需要用光学材料将数以万计的电路刻在小小的7nm的芯片上,而这种辅助的光学材料,就是光刻胶。
在光刻胶领域,材料主要分为四种,分别为g线、i线、KrF、ArF光刻胶,半导体工艺越高,光刻机的精度越高,照射的光线频率越高,波长越短。
光刻胶的分辨率会随着光线频率的改变而不断变化,基本的演进路线是:g线(436nm) i线(365nm) KrF(248nm) ArF(193nm) F2(157nm) EUV(
其中,ArF光刻胶的制造难度是最高的,这也是14nm/7nm芯片制造过程中不可或缺的原材料。
芯片的工艺也分等级,平板电脑、 汽车 芯片等工艺水平并不高,这各等级的芯片中国已经实现了从光刻机到芯片的完全自主化生产。真正困难的在于7nm的芯片,也就是华为遭到断供的手机芯片。
这种工艺的手机芯片,不仅需要荷兰ASML先进的EVU光刻机来生产,更需要高端的光刻胶作为辅助材料,以及大量的芯片原材料,才能成功生产出华为手机所需要的芯片。
光刻机被美国和荷兰的公司垄断,现在EVU光刻机对中国处于断供状态,中芯国际花了12亿购买的EVU光刻机至今仍未到货;
芯片原材料,虽然国内已有部分原材料实现自主生产,但是硅片、光掩模、电子特气、抛光材料、溅射靶材、光刻胶以及湿电子化学品这其中原材料完全依赖进口。
在全球光刻胶市场,日本东京应化,JSR,住友化学,信越化学等企业,掌握了全球半导体光刻胶市场的90%左右份额,几乎是垄断的状态。
方正证券的报告显示,中国大陆企业在全球光刻胶领域占有率不到13%,在半导体光刻胶领域更是不足5%,完全被日本卡了脖子!
但是,进入2021年以后,中国半导体行业国产化的趋势越来越强!
首先是光刻机领域,上海微电子已经实现28nm光刻机的量产,预计2022年可以交付,这款光刻机的性能与荷兰ASML的DVU光刻机相似,可以生产14nm制程工艺的芯片。
另外,美国虽然断供了最先进的EVU光刻机,但是制程工艺相对较低的DVU光刻机却没有断供,而荷兰ASML也明确表态过,EVU光刻机也可以用于7nm工艺芯片,英特尔的10nm工艺、台积电第一个7nm芯片,都是用DVU光刻机实现。
这意味着,2022年,现有的光刻机技术或许能够提前量产华为所需的7nm芯片,打破美国封锁。
而生产7nm工艺芯片所需要的ArF光刻胶,在7月2日就已经有国外企业向南大光电订购了,这意味着半导体光刻胶原材料也实现了自主化。
另外,南大光电,容大感光、上海新阳等国内企业,也在持续研发高端光刻胶,争取在现有技术上进一步突破,追上日本的光刻胶技术。
剩下的6种完全依赖进口的原材料,国内的企业肯定也已经发现了商机,正在朝着国产化转变;最关键的两项技术突破后,中国实现手机芯片国产化的日子也就不远了。
空谈误国、实干兴邦,中国的半导体行业,正在默默地奋力追赶,一如这次南大光电突然给市场来个惊喜一样,未来还将会看到更多的一鸣惊人的突破。
中国半导体,正在以惊人的速度崛起!
作者 | 金莱
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)