半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
一、半导体材料主要种类
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
1、元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性半导体材料的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态B、Si、Ge、Te具有半导性Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。
(半导体材料)
2、无机化合物半导体:分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。②Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb组成,典型的代表为GaAs。它们都具有闪锌矿结构,它们在应用方面仅次于Ge、Si,有很大的发展前途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和Ⅵ族元素S、Se、Te形成的化合物,是一些重要的光电材料。ZnS、CdTe、HgTe具有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素Cu、Ag、Au和 Ⅶ族元素Cl、Br、I形成的化合物,其中CuBr、CuI具有闪锌矿结构。⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族元素 S、Se、Te形成的化合物具有的形式,如Bi2Te3、Bi2Se3、Bi2S3、As2Te3等是重要的温差电材料。⑥第四周期中的B族和过渡族元素Cu、 Zn、Sc、Ti、V、Cr、Mn、Fe、Co、Ni的氧化物,为主要的热敏电阻材料。⑦某些稀土族元素 Sc、Y、Sm、Eu、Yb、Tm与Ⅴ族元素N、As或Ⅵ族元素S、Se、Te形成的化合物。 除这些二元系化合物外还有它们与元素或它们之间的固溶体半导体,例如Si-AlP、Ge-GaAs、InAs-InSb、AlSb-GaSb、InAs-InP、GaAs-GaP等。研究这些固溶体可以在改善单一材料的某些性能或开辟新的应用范围方面起很大作用。
(半导体材料元素结构图)
半导体材料
三元系包括:族:这是由一个Ⅱ族和一个Ⅳ族原子去替代Ⅲ-Ⅴ族中两个Ⅲ族原子所构成的。例如ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2等。族:这是由一个Ⅰ族和一个Ⅲ族原子去替代Ⅱ-Ⅵ族中两个Ⅱ族原子所构成的, 如 CuGaSe2、AgInTe2、 AgTlTe2、CuInSe2、CuAlS2等。:这是由一个Ⅰ族和一个Ⅴ族原子去替代族中两个Ⅲ族原子所组成,如Cu3AsSe4、Ag3AsTe4、Cu3SbS4、Ag3SbSe4等。此外,还有它的结构基本为闪锌矿的四元系(例如Cu2FeSnS4)和更复杂的无机化合物。
3、有机化合物半导体:已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。
4、非晶态与液态半导体:这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。
二、半导体材料实际运用
制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
半导体材料所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。
(半导体材料)
绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。
在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。
三、半导体材料发展现状
相对于半导体设备市场,半导体材料市场长期处于配角的位置,但随着芯片出货量增长,材料市场将保持持续增长,并开始摆脱浮华的设备市场所带来的阴影。按销售收入计算,
半导体材料日本保持最大半导体材料市场的地位。然而台湾、ROW、韩国也开始崛起成为重要的市场,材料市场的崛起体现了器件制造业在这些地区的发展。晶圆制造材料市场和封装材料市场双双获得增长,未来增长将趋于缓和,但增长势头仍将保持。
(半导体材料)
美国半导体产业协会(SIA)预测,2008年半导体市场收入将接近2670亿美元,连续第五年实现增长。无独有偶,半导体材料市场也在相同时间内连续改写销售收入和出货量的记录。晶圆制造材料和封装材料均获得了增长,预计今年这两部分市场收入分别为268亿美元和199亿美元。
日本继续保持在半导体材料市场中的领先地位,消耗量占总市场的22%。2004年台湾地区超过了北美地区成为第二大半导体材料市场。北美地区落后于ROW(RestofWorld)和韩国排名第五。ROW包括新加坡、马来西亚、泰国等东南亚国家和地区。许多新的晶圆厂在这些地区投资建设,而且每个地区都具有比北美更坚实的封装基础。
芯片制造材料占半导体材料市场的60%,其中大部分来自硅晶圆。硅晶圆和光掩膜总和占晶圆制造材料的62%。2007年所有晶圆制造材料,除了湿化学试剂、光掩模和溅射靶,都获得了强劲增长,使晶圆制造材料市场总体增长16%。2008年晶圆制造材料市场增长相对平缓,增幅为7%。预计2009年和2010年,增幅分别为9%和6%。
半导体材料市场发生的最重大的变化之一是封装材料市场的崛起。1998年封装材料市场占半导体材料市场的33%,而2008年该份额预计可增至43%。这种变化是由于球栅阵列、芯片级封装和倒装芯片封装中越来越多地使用碾压基底和先进聚合材料。随着产品便携性和功能性对封装提出了更高的要求,预计这些材料将在未来几年内获得更为强劲的增长。此外,金价大幅上涨使引线键合部分在2007年获得36%的增长。
与晶圆制造材料相似,半导体封装材料在未来三年增速也将放缓,2009年和2010年增幅均为5%,分别达到209亿美元和220亿美元。除去金价因素,且碾压衬底不计入统计,实际增长率为2%至3%。
四、半导体材料战略地位
20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命20世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、 *** 纵和制造功能强大的新型器件与电路,深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb】,就能免费领取哦~
《科创板日报》(编辑 郑远方), 日前,全球半导体厂商相继公布2021年全年业绩的同时,也展开了2022年行业展望。
通过10家公司财报及电话会议内容——包括英飞凌、恩智浦、意法半导体、德州仪器、瑞萨电子5家IDM厂商,台积电、格芯、中芯国际3家晶圆代工厂商,以及ASML、Lam Research 2家设备厂商,《科创板日报》整理出各家对2022年行业走向的大致判断。
总体上,虽说“缺芯渐入尾声”的疑虑已笼罩市场多时,但从多家厂商的表态来看, 目前库存水平仍远不及预期,产业链依旧难以摆脱供应短缺。
针对芯片供应短缺具体结束时间,各家答案不尽相同。乐观者如英飞凌认为,有望在今年告别芯片短缺;而恩智浦却给出完全相反的意见,认为今年难以收尾。
ASML则认为无需担心供需反转,其指出半导体增长前景的确需要大幅扩产;同时,行业自身会设法避开供应过剩,以“维持一个无障碍、高效的创新生态系统。”
另一方面, 此前“需求分化”的消息也得到进一步论证。 台积电等晶圆代工厂作出了“景气分化、不同应用领域需求各异”的判断;中芯国际还提出,地区需求也将分化。
下游需求极为强劲,多家企业手握大额订单,远高于产能规划水平。细分领域中,车用芯片则成为各大厂商一致看好的领域。
【整体订单情况】
部分厂商已透露目前具体在手订单/预付款金额,从“订单能见度高”、“订单量远超供应”等乐观表述中,不难看出需求高涨的盛况依旧。
英飞凌:
新签订单大幅超过取消的订单量。不过公司也提醒,部分订单或意在防备短缺,因此随着供应改善、重复下单取消,未来几个季度这一订单金额或将大幅下降。
恩智浦:
在手订单已远远超过供应能力,能见度达2023-2024年,目前“没有任何订单取消或改期”。
意法半导体:
订单能见度较高,在手订单超过18个月水平,远高于公司目前及2022年规划产能。
瑞萨电子:
截至2021年底,公司在手订单额超过1.2万亿日元;2022全年已确认订单也在增长。
台积电:
截至2021年底,已收到67亿美元预付款。总体来说,来自IC设计与IDM委外等订单增加,“晶圆代工今年会是个好年”。
【库存】
• 恩智浦:
2021年Q4,库存水位进一步降低;渠道库存水位也小幅下降至1.5个月。恩智浦预计,2022年供需情况将于2021年类似。
• 德州仪器:
2021年Q4,德仪库存水位为116天,较前一季度高出约4天水平,但仍低于公司130-190天的目标。
【 汽车 芯片】
在本次统计的10家企业中,除设备厂商之外,其余所有公司均表现出对 汽车 业务增长的强烈信心。
整体上,2021年半导体厂商 汽车 芯片业务营收已有较大增幅,2022年也已获新订单在手。未来电动化、智能化仍是这一市场的两条增长主线:电动 汽车 方面,驱动因素包括充电基建、动力电池电源管理芯片;智能驾驶方面,则包括L2+/L3级智能驾驶发展、4D成像雷达等。
• 英飞凌:
汽车 芯片需求“远超”公司供给能力,库存水位也严重低于正常水平。值得注意的是,英飞凌指出,除电动/智能 汽车 本身之外,充电基础设施也是需求增长的另一大驱动力。
• 恩智浦:
得益于电动 汽车 及L2+/L3级智能驾驶发展, 汽车 领域订单稳定性明显增强,公司2022年已有订单在手。值得注意的是,只要芯片短缺情况仍在持续,整车厂便会将芯片供应及自身产能优先供给高端车型,以获得更高盈利。
• 意法半导体:
今年车用芯片产能已售罄。预计未来85%的 汽车 芯片将落在16nm-19nm制程。
• 德州仪器:
2021年全年,工业、 汽车 两大领域将是德仪未来发展的“战略重点”。
• 瑞萨电子:
汽车 领域业务增长驱动力强劲,包括车规级MCU等相关芯片配备数量增长、产品价格上涨、整车厂生产恢复、确保库存。
• 台积电:
预期2022年, 汽车 业务增长将高于公司整体水平。
• 格芯:
预计今年 汽车 业务会有季度波动,但总体依旧非常看好终端需求的强劲增长潜力;且部分客户将在2023年开始在4D成像雷达及动力电池电源管理方面开始发力,格芯有望受惠。
• 中芯国际:
物联网、电动 汽车 、中高端模拟IC等增量市场需求旺盛,存在结构性产能缺口。
【其余业务】
除 汽车 芯片之外,被提及的其余增长点则较为分散。其中,工业、物联网领域需求被提及频次相对较多,基建、数据中心、AI、元宇宙、碳化硅也受部分企业看好。不过,多数厂商预计,消费电子需求或将进一步疲软。
• 英飞凌:
今年SiC(碳化硅)业务营收将翻倍增长达3亿欧元,这一领域需求同样明显高于现有产能。
• 瑞萨电子:
工业/基建/物联网需求同样高涨,不过瑞萨预计,今年Q1其营收及客户需求量环比增幅将低于 汽车 芯片。
• 格芯:
智能移动终端市场中,Wi-Fi 6、5G图像传感器、电源应用需求;通信基建、数据中心市场需求;物联网有望成为格芯2022年增长最快业务领域。
• 台积电:
细分应用市场中,某些市场强劲势头可能会放缓或调整。预期2022年,HPC、 汽车 业务增长将高于公司整体水平,物联网增速与公司水平一致,智能手机业务略低于公司水平。
• 中芯国际:
手机和消费电子市场缺乏发展动力,存量市场供需逐步平衡;物联网、电动 汽车 、中高端模拟IC等增量市场需求旺盛,存在结构性产能缺口。
• Lam Research(泛林/科林研发)
AI、物联网、云计算、5G及元宇宙将成为强劲增长驱动力,全年晶圆设备需求有望继续增长。
每年年末都会对当年度全球半导体产业情况作出回顾,同时对下一年的产业走势作出预测。在市场需求持续疲弱的底色下,叠加了中美战略博弈对抗升级,以及国内疫情防控等超预期因素冲击,毫无疑问2022年的全球半导体行业是极其艰难的一年。面对2023年,WSTS、ICinsights、Gartner等知名分析机构都给出了悲观预测,甚至认为全球半导体行业正走向自2000年互联网泡沫后的最大衰退。
在对2023年全球半导体产业发展悲观预期如此一致的情况下,最大的不确定性可能就在于国内半导体行业将会如何发展?尤其是在政治因素正在最大限度的干扰半导体行业自身规律的情况下,有必要对2023年及以后的全球及国内半导体产业发展趋势作出分析和预判,也欢迎各位一起讨论。
全球经济向中低速增长回归,半导体行业缺乏基础驱动力。新冠疫情爆发以来的3年,全球GDP平均增长速度下降接近50%,除此之外,俄乌冲突、通胀攀升和央行货币政策紧缩等也引发世界性的全面经济衰退,预计2023年及未来一段时间全球经济将向GDP增速低于3%的中低速增长回归。半导体行业作为充分反映全球经济的风向标,未来有可能将长期陷入缺乏宏观经济基本面支撑的困局,2023年全球半导体行业将可能迎来5%-10%的负增长,而以后2-3年也将维持在低于8%的低速区间徘徊运行。
市场创新出现断层危机,引发技术创新投入边际报酬递减。2023年全球半导体产业仍然面临“需求创新困境”持续低迷,基于PC、手机、消费电子等市场的渐进式创新已经进入衰退期,增量空间显著收窄,如同手机、PC等可以支撑半导体技术快速迭代升级的下一代现象级市场尚未成熟和全面爆发,市场端的创新需求出现“断层”。而当前结构性的技术变化依然主要停留在工程层面,并未发生能够在短期内扩张总体经济空间的重大基础技术革命,因此同业竞争会更趋近于零和博弈,技术创新投入遵循边际报酬递减规律,部分国家对先进技术的高成本投入将逐步趋缓。
中美战略对抗日益升级,“科技脱钩”引发供应链低效率。2023年中美半导体领域的博弈有望迎来短时间的战略缓冲期,但随着美国2024年大选临近,美国仍会间歇性的联合其盟友以国家安全理由对中国半导体产业进行升级压制与围堵。除半导体关键设备、基础工业材料及零部件等供应链环节外,还可能涉及到新能源汽车、数字新基建等更广泛领域,短期内中国半导体产业高端化升级面临的“卡脖子”困境更加严重。而行政繁冗的内政环境可能会影响美国芯片政策的落实进程,联邦与各州对半导体产业设置的繁杂法律限制短期内很难出现根本性改变[1],全球供应链也由此进入2-3年的低效率调整期,资本支出大幅缩减。
产业格局“西进东出”,半导体人才等资源面临全球紧缺。2023年全球集成电路产业链布局的成本与效率导向势必要让位于安全原则和韧性偏好,出现了区域化与短链化同步、产业格局“西进东出”的趋势,以中国大陆为中心的东亚半导体产业链与布局可能面临更大不确定性,不少跨国半导体企业将重新思考既往布局与未来规划问题,由此引发了半导体人才等资源的全球短缺和风险偏好明显弱化。美国及其盟国将进一步升级半导体“人才隔离”的措施,中国有可能面临高水平半导体人才加速流失的极大困境,东南亚及欧洲、日韩等地区则由此受益。
国内市场呈现复苏潜力,防疫政策变化或在年底引发反d。2023年上半年国内半导体市场会有较大压力,除受到全球经济衰退影响以外,防疫政策约束下的消费不振、美国打压政策的延续性影响会持续发酵,影响产业信心和动力。随着两会后防疫政策调整逐步见效,短期内产业驱动力依然受到疫情升温的抑制,但部分产品领域需求环境可能会在3-6个月后有所改善,芯片库存压力会在2023年下半年以后逐步释放。2023年底国内有望受益于疫情影响力度大幅减弱、消费信心阶段性恢复以及去库存完成等影响,迎来小规模反d,芯片设计及封装测试等产业链环节、手机、消费电子、工业半导体、数据中心等应用领域的行情逐步恢复向好。
产业链高端替代是主线,前沿创新和基础突破关注度倍增。2023年产业链高附加值环节的国产替代依然是主线,基本替代逻辑从前些年的资本驱动转由内循环市场驱动,更多国内新基建、新能源、数字经济、信息消费场景的整机系统厂商将加速推进国产芯片的验证和采购,泛信创市场覆盖范围进一步扩大到金融、电力、轨道交通、运营商等领域。半导体设备、材料及零部件等供应链环节以及存储器等高端通用芯片受到美国管制新规影响,国产化进度进入到动态调整期,制造、设备企业对国内基础材料和零部件企业的支持力度明显提升,验证进度加快。同时,对Chiplet/先进封装、PIC光子集成电路、MRAM/RRAM新兴存储器、RISC-V计算架构、氧化镓等前沿创新和基础领域的关注度将大幅增加。
部分企业面临生存困境,“内卷”领域加速启动并购整合。2023年半导体行业过剩的投机资本将对这个赛道不再感兴趣,Pre-IPO项目、美籍高管为主项目、已出现头部企业或者多家上市公司的赛道项目中部分将面临融资困境,部分优质项目可能会因估值受影响而主动关闭融资窗口,进一步压低资本的投资偏好。产业中涌现出更多的潜在并购整合机会,上市公司和相关联的产业基金成为主要推手。在MCU、蓝牙/WIFI、射频前端、显示驱动、电源管理芯片等创企数量众多、中低端替代已经实现、头部企业优势明显的产品领域有望出现以上市公司推动的并购整合。而在估值、企业经营成本、技术门槛都高的一些大芯片领域,有可能出现由基金推动的并购整合。
打好“市场”“体制”牌,新一轮产业政策周期酝酿待发。2000年的“18号文”,2011年的“新4号文”,2014年的《纲要》以及2020年的“新8号文”共同构成了我国半导体产业政策体系的关键节点,并不断推动产业可持续发展。产业政策的重要性不仅在于解决特定领域关键技术有无问题,更要解决相应创新体制和生态的塑造问题。在中美战略博弈升级、半导体供应链形势不确定性显著增强、国内市场需求不振等多方面因素影响下,2023年国内新一轮半导体产业政策周期有望酝酿开启。
这篇文章我写的异常艰难,一是因为当前形势下很多内容和观点不方便书写,二是因为对2023年的悲观预期已成共识,似乎也没什么好写。但我总认为,无论是行业周期、疫情政策还是美国遏制如何影响,都还是要对我国半导体产业保持相对乐观的态度,要尝试在碎玻璃渣子里找糖吃,在苦日子里寻得一抹阳光。
要想中国半导体成功突破低端锁定,既不可能通过速战速决抄近路的战略,也无法通过继续依附于美国主导的全球半导体供应链体系获得,只能以坚定的战略意志,借由建设涵盖体制-技术-市场多重创新的内循环体系来实现,这势必是个“持久战”。
无论是中国还是美国,始终还是要回到全球化的轨道上,这是半导体产业的基本规律。那时的全球化将会赋予中国全然不同的角色,给予中国企业更多公平竞技的机会,进入更广阔的新兴市场;同时,中国也可以将更广大的世界纳入我们自己搭建的创新和产业共同体,实现真正的国际国内双循环。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)