首次观察到:电子的谷之间,有一种新型过渡方式的光发射

首次观察到:电子的谷之间,有一种新型过渡方式的光发射,第1张

由加州大学河滨分校科学家领导的一个国际研究小组,首次观察到了电子的谷之间一种新型过渡方式的光发射,这种过渡方式被称为谷间传输,其研究成果发表在《物理评论快报》期刊上。这项研究提供了一种读出谷信息的新方法,有可能促进新型设备的出现。当前的半导体技术使用电子电荷或自旋来存储和处理信息;相关技术分别称为电子学和自旋电子学。

一些半导体在其电子能带结构中含有可用于编码、处理和存储信息的局部能谷,从而产生了一种称为电子学的新技术。领导了对单层二硒化钨(WSe2)谷间转变研究的加州大学河滨分校物理和天文学系助理教授雷春红(Chun Hung“Joshua”Lui)说:除了传统的电子学和自旋电子学之外,vallettronics还提供了另一种设计信息系统的途径,新研究可以加快电子学的发展。

单层WSe_2在能带结构中具有两个动态特性相反的谷,是一种很有前途的谷电子材料。此外,这种材料可以与光产生强烈的相互作用,有望用于光学可控电子学领域。当单层WSe2吸收光子时,束缚的电子可以在谷中释放,留下电子空位或空穴。由于空穴的行为就像一个带正电荷的电子,电子和空穴可以相互吸引,形成一种被称为激子的束缚态。这样的激子,它的电子和空穴都在同一个谷中,称为谷内激子。

目前对单层谷半导体中激子的研究,主要集中在可以发光的谷内激子。电子和相对谷中的空穴也可以形成激子,称为谷间激子,这是电子电子学中的一种新成分。然而,动量守恒定律禁止相对谷中的电子和空穴直接复合发光。因此,谷间激子是“暗的”,隐藏在光谱中。加州大学河滨分校领导的研究小组,现在已经观察到了单层WSe2中谷间激子的光发射。尽管谷间激子本质上是暗的,但它们可以在材料中的缺陷或晶格振动下发出大量的光。

带有缺陷或晶格振动的散射,可以补偿相反山谷中电子和空穴之间的动量失配,从而可以观察到谷间激子的发光。实验室博士后研究员、研究的第一作者刘尔福(音译)说:虽然这个过程涉及缺陷或晶格振动的散射,但谷间的光发射是圆偏振,这种圆光偏振使我们能够识别激子谷的构型,这种光学可读的谷构型对于使谷间激子可用于谷间激子的应用至关重要。

除了激子,单层WSe2还含有三重粒子,由两个电子和一个空穴或两个空穴和一个电子组成。三重粒子也有定义良好的谷配置,适用于valley tronic应用。与电荷中性激子相比,三重粒子的运动可以由电场控制。三重粒子通常可以通过两条路径衰变,例如,对于一个由谷内电子-空穴对和对谷中空穴组成的三重粒子衰变,电子可以选择与同谷中的空穴或与对谷中的空穴复合。

这导致了两种不同的三重粒子衰变路径,谷内和谷间电子-空穴复合。谷内三重粒子衰变已被广泛研究,但谷间三重粒子衰变至今未见报道。加州大学河滨分校领导的研究小组首次展示了谷间三重粒子衰变。虽然三重粒子可以通过谷内或谷间衰变来衰变,但这两种跃迁具有相同的能量,在光谱中很难区分,但当施加磁场时,谷内和谷间跃迁的能量将变得不同。

研究小组在佛罗里达州塔拉哈西的国家高磁场实验室进行了实验,它们同时显示了三个单元的谷内和谷间衰变路径。其研究结果提供了单层WSe2中三重粒子动力学更完整、多路径的图景,研究人员建立在现有二维材料中三重粒子的单路径描述基础上,是进一步发展基于三重粒子电子的谷科学和技术的关键。

半导体主要具有三大特性:

1.热敏特性

半导体的电阻率随温度变化会发生明显地改变。例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。温度的细微变化,能从半导体电阻率的明显变化上反映出来。利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。

值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。

2.光敏特性

半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时。电阻一下子降到几十千欧姆,电阻值改变了上千倍。利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等。广泛应用在自动控制和无线电技术中。

3.掺杂特性

在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。例如。在纯硅中掺人。百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm,也就是硅的导电能为提高了50多万倍。人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。

扩展资料

1、半导体的组成部分

半导体的主要由硅(Si)或锗(Ge)等材料制成,半导体的导电性能是由其原子结构决定的。

2、半导体分类

(1)半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

(2)按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。

此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

3、半导体的作用与价值

目前广泛应用的半导体材料有锗、硅、硒、砷化镓、磷化镓、锑化铟等。其中以锗、硅材料的生产技术较成熟,用的也较多。

用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。在新产品研制及新技术发展方面,比较重要的领域有:

(1)集成电路 它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。

(2)微波器件 半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。

(3)光电子器件 半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9171611.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存